Skip to main content
Log in

Structural, optical, and antibacterial properties of pure and doped (Ni, Co, and Fe) Cr2O3 nanoparticles: a comparative study

  • Original Article
  • Published:
Applied Nanoscience Aims and scope Submit manuscript

Abstract

Sol–gel method was used to synthesize pure and doped (Ni, Co, and Fe) Cr2O3 nanoparticles (NixCr2-xO3, CoxCr2-xO3, and FexCr2-xO3, where x = 0.00, 0.01, 0.03, 0.05, and 0.07). The structural properties of the prepared samples were determined using x-ray powder diffraction (XRD) with an aim to investigate the influence of doping concentration on the behavior of pure and doped Cr2O3 nanoparticles (NPs). The average crystallite size was estimated with Debye Scherrer’s formula. Morphology of pure and doped (Ni, Co, and Fe) Cr2O3 nanoparticles was examined using field emission scanning electron microscope (FESEM). Fourier  transform infrared spectroscopy (FT-IR) was employed to ascertain surface group species of the samples. UV–Vis spectroscopy was used to determine the energy band gap of samples through optical absorption spectrum. Photoluminescence spectroscopy was undertaken to acquire emission and absorption spectra and determine defects in the structures of all synthesized nanopowder samples. Antibacterial activity of pure and doped (Ni, Co, and Fe) Cr2O3 nanoparticles was investigated against Gram-negative bacteria such as Escherichia coli (E. coli) and Gram-positive bacteria Staphylococcus aureus (S. aureus) using paper disc diffusion method and pour plate procedure. Enhanced anti-bactericidal activity was shown against Gram-negative bacteria compared to Gram-positive bacteria. The minimum and maximum inhibition of E. coli and S. aureus was recorded with 40 and 100 μg/ml of nanoparticles, respectively. Furthermore, iron-doped Cr2O3 was more effective in restricting growth of bacterial cell compared to cobalt- and nickel-doped Cr2O3. Superior activity observed against E. coli and S. aureus in terms of inhibition make these samples suitable and potential candidates in medical and paint industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azra Parveen.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interest regarding the publication of this paper.

Ethical approval

This paper does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almontasser, A., Parveen, A., Hashim, M. et al. Structural, optical, and antibacterial properties of pure and doped (Ni, Co, and Fe) Cr2O3 nanoparticles: a comparative study. Appl Nanosci 11, 583–604 (2021). https://doi.org/10.1007/s13204-020-01590-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13204-020-01590-w

Keywords

Navigation