Skip to main content

Advertisement

Log in

Effect of Al2O3/Y2O3 in AA 7017 matrix nanocomposites on phase formation, microstructures and mechanical behavior synthesized by mechanical alloying and hot-pressing techniques

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Mechanical alloying (MA–20 h) and hot pressing (HP–500 MPa, 400 °C, 60 min) were used to fabricate AA 7017, AA 7017 + 10 vol.% Al2O3, AA 7017 + 10 vol.% Y2O3, and AA 7017 + (5 vol.% Al2O3 + 5 vol.% Y2O3) nanocomposites. The effects of oxide addition on the microstructure (HR-SEM and HR-TEM), phase evolution (XRD) and mechanical behavior (hardness and compressive strength) were investigated. The microstructure of the samples exhibited grain refinement due to fracturing and severe plastic deformation during MA with homogeneous dispersions. Scherrer’s and Williamson–Hall models were analyzed for the structural properties (crystal size, lattice strain and lattice parameter) variation on the powder and hot consolidated samples. The results of the mechanical properties showed that the hybrid nanocomposite exhibited higher hardness (296 ± 1.87 VHN) and compressive strength (1047.5 ± 2.96 MPa) along with the formation of MgZn2 and Al2Y precipitates, indicating a supersaturated solid solution. The precipitation and dislocation models play an important role in the strengthening mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The experimental datasets obtained from this research work and the analyzed results during the current study are available from the corresponding author on reasonable request.

Abbreviations

MA:

Mechanical alloying

HP:

Hot-pressing

BPR:

Ball-to-powder ratio

XRD:

X-ray diffraction

HRSEM:

High-resolution scanning electron microscopy

HRTEM:

High-resolution transmission electron microscopy

PSA:

Particle size analyzer

References

  1. S.L. Donaldson, D.B. Miracle, ASM Handbook Composites Volume 21, (2001)

  2. S. Bera, S.G. Chowdhury, Y. Estrin, I. Manna, Mechanical properties of Al7075 alloy with nano-ceramic oxide dispersion synthesized by mechanical milling and consolidated by equal channel angular pressing. J. Alloys Compd. 548, 257–265 (2013)

    Article  Google Scholar 

  3. M. Tavoosi, F. Karimzadeh, M.H. Enayati, A. Heidarpour, Bulk Al–Zn/Al2O3 nanocomposite prepared by reactive milling and hot pressing methods. J. Alloys Compd. 475, 198–201 (2009)

    Article  Google Scholar 

  4. A. Azimi, A. Shokuhfar, O. Nejadseyfi, Mechanically alloyed Al7075–TiC nanocomposite: powder processing, consolidation and mechanical strength. Mater. Des. 66, 137–141 (2015)

    Article  Google Scholar 

  5. N. Nemati, R. Khosroshahi, M. Emamy, A. Zolriasatein, Investigation of microstructure, hardness and wear properties of Al–4.5 wt.% Cu–TiC nanocomposites produced by mechanical milling. Mater. Des. 32, 3718–3729 (2011)

    Article  Google Scholar 

  6. M.I. Flores-Zamora, I. Estrada-Guel, J. Gonzalez-Hernandez, M. Miki-Yoshida, R. Martinez-Sanchez, Aluminum–graphite composite produced by mechanical milling and hot extrusion. J. Alloys Compd. 434, 518–521 (2007)

    Article  Google Scholar 

  7. I. Estrada-Guel, C. Carreño-Gallardo, D.C. Mendoza-Ruiz, M. Miki-Yoshida, E. Rocha-Rangel, R. Martínez-Sánchez, Graphite nanoparticle dispersion in 7075 aluminum alloy by means of mechanical alloying. J. Alloys Compd. 483, 173–177 (2009)

    Article  Google Scholar 

  8. S.M. Zebarjad, S.A. Sajjadi, Dependency of physical and mechanical properties of mechanical alloyed Al–Al2O3 composite on milling time. Mater. Des. 28, 2113–2120 (2007)

    Article  Google Scholar 

  9. R. Clinktan, K.R. Ramkumar, S. Sivasankaran, Effect of boron carbide addition on strengthening mechanisms, cold workability and instantaneous strain hardening behaviour of Cu4Si14Zn nanocomposites. Mater. Sci. Eng. A. 787, 1–10 (2020). https://doi.org/10.1016/j.msea.2020.139538

    Article  Google Scholar 

  10. B. Prabhu, C. Suryanarayana, L. An, R. Vaidyanathan, Synthesis and characterization of high volume fraction Al–Al2O3 nanocomposite powders by high-energy milling. Mater. Sci. Eng. A. 425, 192–200 (2006)

    Article  Google Scholar 

  11. H. Ahamed, V. Senthilkumar, Role of nano-size reinforcement and milling on the synthesis of nano-crystalline aluminium alloy composites by mechanical alloying. J. Alloys Compd. 505, 772–782 (2010)

    Article  Google Scholar 

  12. R. Karunanithi, D. Ghosh, K.S. Ghosh, S. Bera, Influence of particle size of the dispersoid on compressibility and sinterability of TiO2 dispersed Al 7075 alloy composites prepared by mechanical milling. Adv. Powder Technol. 25, 1500–1509 (2014)

    Article  Google Scholar 

  13. N. Hosseini, F. Karimzadeh, M.H. Abbasi, M.H. Enayati, Tribological properties of Al6061–Al2O3 nanocomposite prepared by milling and hot pressing. Mater. Des. 31, 4777–4785 (2010)

    Article  Google Scholar 

  14. Y.A. Alshataif, S. Sivasankaran, F.A. Al-Mufadi, A.S. Alaboodi, H.R. Ammar, Synthesis, microstructures and mechanical behaviour of Cr0. 21Fe0. 20Al0. 41Cu0. 18 and Cr0. 14Fe0. 13Al0. 26Cu0. 11Si0. 25Zn0. 11 nanocrystallite entropy alloys prepared by mechanical alloying and hot-pressing. Met. Mater. Int. 27, 139–155 (2021)

    Article  Google Scholar 

  15. V. Aghaali, T. Ebadzadeh, Z. Karimi, A. Kazemzadeh, E. Marzbanrad, Effect of mechanical alloying and preheating treatment on the phase transformation of the Al–Cu–Fe compacts annealed by microwave radiation. J. Mater. Res. Technol. 12, 749–759 (2021)

    Article  Google Scholar 

  16. R. Dalai, Microstructure and property relationship between Al-4.5 Cu alloy and Al-4.5 Cu-Al2O3 composite developed by mechanical alloying. Mater. Today Proc. 44, 2754–2759 (2021)

    Article  Google Scholar 

  17. M.A. Taha, G.M. Elkomy, H.A. Mostafa, E.S. Gouda, Effect of ZrO2 contents and ageing times on mechanical and electrical properties of Al–4.5 wt.% Cu nanocomposites prepared by mechanical alloying. Mater. Chem. Phys. 206, 116–123 (2018)

    Article  Google Scholar 

  18. H. Tazari, M.H. Siadati, Synthesis and mechanical properties of aluminum alloy 5083/SiCnp nanocomposites. J. Alloys Compd. 729, 960–969 (2017)

    Article  Google Scholar 

  19. M.Z. Mehrizi, R. Beygi, G. Eisaabadi, Synthesis of Al/TiC–Al2O3 nanocomposite by mechanical alloying and subsequent heat treatment. Ceram. Int. 42, 8895–8899 (2016)

    Article  Google Scholar 

  20. E. de Souza Lima, L.H.L. Louro, R. de Freitas Cabral, J.B. de Campos, R.R. de Avillez, C.A. da Costa, Processing and characterization of Al2O3-yttrium aluminum garnet powders. J. Mater. Res. Technol. 2, 18–23 (2013)

    Article  Google Scholar 

  21. S. Sankaranarayanan, S. Jayalakshmi, M. Gupta, Effect of ball milling the hybrid reinforcements on the microstructure and mechanical properties of Mg–(Ti+ n-Al2O3) composites. J. Alloys Compd. 509, 7229–7237 (2011)

    Article  Google Scholar 

  22. K. Ponappa, S. Aravindan, P.V. Rao, Influence of Y2O3 particles on mechanical properties of magnesium and magnesium alloy (AZ91D). J. Compos. Mater. 47, 1231–1239 (2013)

    Article  ADS  Google Scholar 

  23. F.I.S. Silva, M.S. Pereira, I.F. Vasconcelos, Reaction kinetics of equiatomic Fe–Mo solid solutions obtained by mechanical alloying: an X-ray diffraction and Mössbauer spectroscopy study. Appl. Phys. A. 124, 1–7 (2018)

    Article  Google Scholar 

  24. M. Prashanth, R. Karunanithi, S.R. Mohideen, S. Sivasankaran, An exploration on microstructural observation and mechanical behavior of nanocrystallite Al 7017 alloy via mechanical alloying and uniaxial hot pressing. Mater. Charact. 171, 110803 (2021)

    Article  Google Scholar 

  25. M. Prashanth, R. Karunanithi, S. RasoolMohideen, S. Sivasankaran, A comprehensive exploration on the development of nano Y2O3 dispersed in AA 7017 by mechanical alloying and hot-pressing technique, Ceram. Int. (2021)

  26. S. Maity, A. Sinha, S. Bera, A novel study on mechanically alloyed Al–Mg system by X-ray diffraction technique. Nano-Struct Nano-Objects. 16, 63–68 (2018)

    Article  Google Scholar 

  27. E.B. Moustafa, M.A. Taha, Preparation of high strength graphene reinforced Cu-based nanocomposites via mechanical alloying method: microstructural, mechanical and electrical properties. Appl. Phys. A. 126, 1–16 (2020)

    Article  Google Scholar 

  28. E. Salahi, A. Rajabi, Effect of milling time on the characteristics of Al-2.5 wt% AlN nanopowders via mechanical alloying process. J. Miner. Met. Mater. Eng. 4, 35–40 (2018)

    Google Scholar 

  29. T. Das, R. Karunanithi, A. Sinha, K.S. Ghosh, S. Bera, Deformation, decomposition and hardening behavior of nano Al7075 alloy prepared by mechanical milling and hot pressing. Adv. Powder Technol. 27, 1874–1877 (2016)

    Article  Google Scholar 

  30. J.-F. Li, Z. Peng, C.-X. Li, Z.-Q. Jia, W. Chen, Z.-Q. Zheng, Mechanical properties, corrosion behaviors and microstructures of 7075 aluminium alloy with various aging treatments. Trans. Nonferrous Met. Soc. China. 18, 755–762 (2008)

    Article  Google Scholar 

  31. L.P. Huang, K.H. Chen, S. Li, M. Song, Influence of high-temperature pre-precipitation on local corrosion behaviors of Al–Zn–Mg alloy. Scr. Mater. 56, 305–308 (2007)

    Article  Google Scholar 

  32. A. Azimi, H. Fallahdoost, O. Nejadseyfi, Microstructure, mechanical and tribological behavior of hot-pressed mechanically alloyed Al–Zn–Mg–Cu powders. Mater. Des. 75, 1–8 (2015)

    Article  Google Scholar 

  33. A. Azimi, A. Shokuhfar, A. Zolriasatein, Nanostructured Al–Zn–Mg–Cu–Zr alloy prepared by mechanical alloying followed by hot pressing. Mater. Sci. Eng. A. 595, 124–130 (2014)

    Article  Google Scholar 

  34. M.S. El-Wazery, R.A. Elsad, S.M. Khafagy, M.M. Meiz, Enhancement of microstructure and mechanical properties of hypereutectic Al–16% Si alloy by ZnO nanocrystallites. Appl. Phys. A. 124, 1–6 (2018)

    Article  Google Scholar 

  35. L.T. Tang, D.G. Zhu, Z. Sun, X.S. Jiang, T.F. Song, C.F. Hu, Microstructure and mechanical properties of Al-Ti-Zr intermetallic compounds prepared by vacuum hot pressing. Vacuum 150, 166–172 (2018)

    Article  ADS  Google Scholar 

  36. M. Dixit, R.S. Mishra, K.K. Sankaran, Structure–property correlations in Al 7050 and Al 7055 high-strength aluminum alloys. Mater. Sci. Eng. A. 478, 163–172 (2008)

    Article  Google Scholar 

  37. S. Sivasankaran, K.R. Ramkumar, A.S. Alaboodi, Strengthening mechanisms on (Cu–10Zn)100–x–x wt% Al2O3 (x = 0, 3, 6, 9 and 12) nanocomposites prepared by mechanical alloying and vacuum hot pressing: influence of reinforcement content. Trans. Indian Inst. Met. 70, 791–800 (2017). https://doi.org/10.1007/s12666-017-1054-5

    Article  Google Scholar 

  38. C.P. Blankenship Jr., E. Hornbogen, E.A. Starke Jr., Predicting slip behavior in alloys containing shearable and strong particles. Mater. Sci. Eng. A. 169, 33–41 (1993)

    Article  Google Scholar 

  39. C.J. Hsu, C.Y. Chang, P.W. Kao, N.J. Ho, C.P. Chang, Al–Al3Ti nanocomposites produced in situ by friction stir processing. Acta Mater. 54, 5241–5249 (2006)

    Article  ADS  Google Scholar 

  40. C.Y. Yu, P.W. Kao, C.P. Chang, Transition of tensile deformation behaviors in ultrafine-grained aluminum. Acta Mater. 53, 4019–4028 (2005)

    Article  ADS  Google Scholar 

  41. H. Zhang, H. Zhu, X. Nie, J. Yin, Z. Hu, X. Zeng, Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy. Scr. Mater. 134, 6–10 (2017)

    Article  Google Scholar 

  42. S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, V.K. Iyer, Effect of strengthening mechanisms on cold workability and instantaneous strain hardening behavior during grain refinement of AA 6061–10 wt.% TiO2 composite prepared by mechanical alloying. J. Alloys Compd. 507, 236–244 (2010)

    Article  Google Scholar 

  43. A. Elik, A. Demirbaş, N. Altunay, Experimental design of ligandless sonication-assisted liquid-phases microextraction based on hydrophobic deep eutectic solvents for accurate determination of Pb (II) and Cd (II) from waters and food samples at trace levels. Food Chem. 371, 131138 (2022)

    Article  Google Scholar 

  44. L. Chen, L. Guo, Y. Wu, Y. Jia, Z. Li, X. Chen, Fabrication of vertically aligned graphene sheets on SiC substrates. RSC Adv. 3, 13926–13933 (2013)

    Article  ADS  Google Scholar 

  45. S. Galliano, F. Bella, G. Piana, G. Giacona, G. Viscardi, C. Gerbaldi, M. Grätzel, C. Barolo, Finely tuning electrolytes and photoanodes in aqueous solar cells by experimental design. Sol. Energy. 163, 251–255 (2018)

    Article  ADS  Google Scholar 

  46. D. Pugliese, F. Bella, V. Cauda, A. Lamberti, A. Sacco, E. Tresso, S. Bianco, A chemometric approach for the sensitization procedure of ZnO flowerlike microstructures for dye-sensitized solar cells. ACS Appl. Mater. Interfaces. 5, 11288–11295 (2013)

    Article  Google Scholar 

  47. M. Choufany, D. Martinetti, S. Soubeyrand, C.E. Morris, Inferring long-distance connectivity shaped by air-mass movement for improved experimental design in aerobiology. Sci. Rep. 11, 1–10 (2021)

    Article  Google Scholar 

  48. F. Bella, A. Sacco, D. Pugliese, M. Laurenti, S. Bianco, Additives and salts for dye-sensitized solar cells electrolytes: what is the best choice? J. Power Sourc. 264, 333–343 (2014)

    Article  ADS  Google Scholar 

  49. F. Bella, D. Pugliese, J.R. Nair, A. Sacco, S. Bianco, C. Gerbaldi, C. Barolo, R. Bongiovanni, A UV-crosslinked polymer electrolyte membrane for quasi-solid dye-sensitized solar cells with excellent efficiency and durability. Phys. Chem. Chem. Phys. 15, 3706–3711 (2013)

    Article  Google Scholar 

  50. G.F. Liu, T.J. Chen, Z.J., Wang, Effects of solid solution treatment on microstructure and mechanical properties of SiCp/2024 Al composite: a comparison with 2024 Al alloy. Mater. Sci. Eng. A. 817, 141413 (2021)

    Article  Google Scholar 

  51. Y.I. Matvienko, S.S. Polishchuk, A.D. Rud, O.Y. Popov, S.A. Demchenkov, O.M. Fesenko, Effect of graphite additives on microstructure and mechanical properties of Al–Cu composites prepared by mechanical alloying and sintering. Mater. Chem. Phys. 254, 123437 (2020)

    Article  Google Scholar 

  52. R.G. Rao, M. Ghosh, R.I. Ganguly, K.L. Sahoo, Mechanical properties and age hardening response of Al6061 alloy based composites reinforced with fly ash. Mater. Sci. Eng. A. 772, 138823 (2020)

    Article  Google Scholar 

  53. E. Salur, M. Acarer, İ Şavkliyildiz, Improving mechanical properties of nano-sized TiC particle reinforced AA7075 Al alloy composites produced by ball milling and hot pressing. Mater. Today Commun. 27, 102202 (2021)

    Article  Google Scholar 

  54. S.D. Kumar, M. Ravichandran, A. Jeevika, B. Stalin, C. Kailasanathan, A. Karthick, Effect of ZrB2 on microstructural, mechanical and corrosion behaviour of aluminium (AA7178) alloy matrix composite prepared by the stir casting route. Ceram. Int. 47, 12951–12962 (2021)

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public and commercial sectors.

Author information

Authors and Affiliations

Authors

Contributions

M. Prashanth involved in conceptualization, methodology, and formal analysis; R. Karunanithi involved in investigation and writing—original draft preparation; S. Rasool Mohideena involved in data curation and writing—review and editing; S.Sivasankara involved in formal analysis and Writing—review and editing.

Corresponding author

Correspondence to R. Karunanithi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent for publication

Authors give consent for the publication of the submitted research article in this journal.

Ethics approval

The submitted work is original and is not published elsewhere in any form.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prashanth, M., Karunanithi, R., Mohideen, S.R. et al. Effect of Al2O3/Y2O3 in AA 7017 matrix nanocomposites on phase formation, microstructures and mechanical behavior synthesized by mechanical alloying and hot-pressing techniques. Appl. Phys. A 128, 85 (2022). https://doi.org/10.1007/s00339-021-05213-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05213-1

Keywords

Navigation