Skip to main content

Advertisement

Log in

Characterization, bioactivity, and antimicrobial activity of CuO-containing devitrite glass–ceramic

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bioactive glass–ceramic was prepared from devitrite (Na2Ca3Si6O16) glass. Limestone and sodium carbonate were used as starting materials. The prepared materials were characterized by different techniques (DTA-Thin film XRD- FTIR- SEM/EDX). Moreover, in vitro degradation studies, bioactivity in simulated body fluid (SBF), and antimicrobial effects against gram-negative and gram-positive bacteria were also investigated. Material characterization reveals that the sintering process of the glasses displayed the crystallization of both pseudowollastonite and devitrite. Moreover, the photomicrographs showed interlocked rods and some accumulated irregular leaf-like crystals at nanometer thickness. The bioactivity results revealed that all samples could form a hydroxyapatite layer either after 2 or 4 weeks in SBF. Furthermore, the microstructure indicated accumulated round clusters containing nanoparticles of hydroxyapatite. Likewise, the increase in densities supports the formation of hydroxyapatite on the sample surfaces after soaking in SBF. The antibacterial results illustrated that all samples had antibacterial properties against the tested bacteria. However, the sample containing more copper had a significantly higher antibacterial effect than the other two samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data in the current study are available from the corresponding author on reasonable request.

References

  1. A.V. Volkov, A.A. Muraev, I.I. Zharkova, V.V. Voinova, E.A. Akoulina, V.A. Zhuikov, D.D. Khaydapova, D.V. Chesnokova, K.A. Menshikh, A.A. Dudun, T.K. Makhina, G.A. Bonartseva, T.F. Asfarov, I.A. Stamboliev, Y.V. Gazhva, V.M. Ryabova, L.H. Zlatev, S.Y. Ivanov, K.V. Shaitan, A.P. Bonartsev, Mater. Sci. Eng. C 114, 110991 (2020)

    Article  Google Scholar 

  2. L.L. Hench, J.K. West. Life Chem. Rep. 13, 187–241 (1996)

    Google Scholar 

  3. J. Hasan, R.J. Crawford, E.P. Ivanova, Trends Biotechnol. 31, 295 (2013)

    Article  Google Scholar 

  4. A.M.C. Barradas, H. Yuan, C.A. Van Blitterswijk, P. Habibovic, T. Medicine, Eur. Cells Mater. 21, 407 (2011)

    Article  Google Scholar 

  5. J. Lu, H. Yu, C. Chen, RSC Adv. 8, 2015 (2018)

    Article  ADS  Google Scholar 

  6. H. Pereira, I.F. Cengiz, F.R. Maia, F. Bartolomeu, J.M. Oliveira, R.L. Reis, F.S. Silva, J Mech. Behav. Biomed. Mater. 112, 103997 (2020)

    Article  Google Scholar 

  7. M.S.K. Mubina, S. Shailajha, R. Sankaranarayanan, S.T. Smily, J. Non. Cryst. Solids 570, 121007 (2021)

    Article  Google Scholar 

  8. P. Srinath, P. Abdul Azeem, K. Venugopal Reddy, Int. J. Appl. Ceram. Technol. 17, 2450 (2020)

    Article  Google Scholar 

  9. A. Charmforoushan, M.R. Roknabadi, N. Shahtahmassebi, B. Malaekeh-Nikouei, Mater. Chem. Phys. 243, 122629 (2020)

    Article  Google Scholar 

  10. N. Zhang, J.A. Molenda, J.H. Fournelle, W.L. Murphy, N. Sahai, Biomaterials 31, 7653 (2010)

    Article  Google Scholar 

  11. R. Du, J. Chang, J. Mater. Sci. Mater. Med. 15, 1285 (2005)

    Article  Google Scholar 

  12. Y. Zhao, C. Ning, J. Chang, J. Sol-Gel Sci. Technol. 52(1), 170 (2009)

    Article  Google Scholar 

  13. B. Xue, W. Wang, L. Guo, Z. Zhang, J. Meng, X. Tao, X. Ren, Z. Liu, Y. Qiang, J. Biomater. Appl. 34, 86 (2019)

    Article  Google Scholar 

  14. J. Bejarano, P. Caviedes, H. Palza, Biomed. Mater. 10, 25001 (2015)

    Article  Google Scholar 

  15. S. Xu, Q. Wu, Y. Guo, C. Ning, K. Dai, Mater. Sci. Eng. C 118, 111493 (2021)

    Article  Google Scholar 

  16. S. Kargozar, M. Mozafari, S. Ghodrat, E. Fiume, F. Baino, Mater. Sci. Eng. C 121, 111741 (2021)

    Article  Google Scholar 

  17. M.M. Ahmed, W.M. Abd-Allah, A.E. Omar, A.A.F. Soliman, J. Inorg. Organomet. Polym. Mater. 30, 3646 (2020)

    Article  Google Scholar 

  18. A. Jacobs, G. Renaudin, C. Forestier, J.M. Nedelec, S. Descamps, Acta Biomater. 117, 21 (2020)

    Article  Google Scholar 

  19. G. Acikbas, N. Calis Acikbas, J. Am. Ceram. Soc. (2021). https://doi.org/10.1111/jace.18149

    Article  Google Scholar 

  20. Z. Qiao, S. Li, Y. Li, J. Wang, Ceram. Int. 47, 31194 (2021)

    Article  Google Scholar 

  21. R. Jiao, S. Rong, D. Wang, Ceram. Int. (2021). https://doi.org/10.1016/j.ceramint.2021.11.153

    Article  Google Scholar 

  22. B. Mirhadi, B. Mehdikhani, Process. Appl. Ceram. 6, 159 (2012)

    Article  Google Scholar 

  23. T. Kokubo, H. Takadama, Biomaterials 27, 2907 (2006)

    Article  Google Scholar 

  24. R.L. Londonkar, U. Madire Kattegouga, K. Shivsharanappa, J.V. Hanchinalmath, J. Pharm. Res. 6, 280 (2013)

    Google Scholar 

  25. B. Athanassiadis, P.V. Abbott, N. George, L.J. Walsh, Aust. Dent. J. 54, 141 (2009)

    Article  Google Scholar 

  26. H.A. ElBatal, M.A. Azooz, E.M.A. Khalil, A. Soltan Monem, Y.M. Hamdy, Mater. Chem. Phys. 80, 599 (2003)

    Article  Google Scholar 

  27. V. Kahlenberg, D. Girtler, E. Arroyabe, R. Kaindl, D.M. Többens, Mineral. Petrol. 100, 1 (2010)

    Article  ADS  Google Scholar 

  28. M.S.K. Mubina, S. Shailajha, R. Sankaranarayanan, L. Saranya, J. Mech. Behav. Biomed. Mater. 100, 103379 (2019)

    Article  Google Scholar 

  29. V. Giannoulatou, G.S. Theodorou, T. Zorba, E. Kontonasaki, L. Papadopoulou, N. Kantiranis, K. Chrissafis, G. Zachariadis, K.M. Paraskevopoulos, J. Non. Cryst. Solids 500, 98 (2018)

    Article  ADS  Google Scholar 

  30. J. Jones, E. Gentleman, J. Polak, Elements 3, 393 (2007)

    Article  Google Scholar 

  31. H. Takadama, H.M. Kim, T. Kokubo, T. Nakamura, J. Biomed. Mater. Res. 57, 441 (2001)

    Article  Google Scholar 

  32. I. Mobasherpour, M.S. Heshajin, A. Kazemzadeh, M. Zakeri, J. Alloys Compd. 430, 330 (2007)

    Article  Google Scholar 

  33. C.Y. Kim, A.E. Clark, L.L. Hench, J. Non. Cryst. Solids 113, 195 (1989)

    Article  ADS  Google Scholar 

  34. H. Gheisari, E. Karamian, M. Abdellahi, Ceram. Int. 41, 5967 (2015)

    Article  Google Scholar 

  35. M. Głab, S. Kudłacik-Kramarczyk, A. Drabczyk, J. Walter, A. Kordyka, M. Godzierz, R. Bogucki, B. Tyliszczak, A. Sobczak-Kupiec, Molecules 26(14), 4268 (2021)

    Article  Google Scholar 

  36. S. Meejoo, W. Maneeprakorn, P. Winotai, Thermochim. Acta. 447, 115 (2006)

    Article  Google Scholar 

  37. Y.N. Slavin, J. Asnis, U.O. Häfeli, H. Bach, J. Nanobiotechnol. 15, 1 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Research Centre and Faculty of Science, Al-Azhar University (Girls), Egypt for the possibility to use their facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Areg E. Omar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omar, A.E., Zayed, H.S. & Hamzawy, E.M.A. Characterization, bioactivity, and antimicrobial activity of CuO-containing devitrite glass–ceramic. Appl. Phys. A 128, 76 (2022). https://doi.org/10.1007/s00339-021-05204-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05204-2

Keywords

Navigation