Skip to main content

Advertisement

Log in

The Dual Effect of Copper and Gamma Irradiation on Chronic Wound Healing of Nanobioactive Glass

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nano bioactive glasses in the system; 70 SiO2–10 P2O5–(20–x) CaO–xCuO (x = 0, 3 and 5% mol%), were synthesized by the rapid alkali sol–gel method. The dual effect of incorporating 0, 3, and 5 mol% of CuO (replacing CaO) and gamma irradiation on nanobioactive glasses structure were studied. The bioactivity, cytotoxicity and promotion in wound healing of fibroblast cells (BJ-1) were studied. The results showed that the unirradiated and irradiated samples were able to form hydroxyapatite layer on their surfaces in SBF after 30 days. Scratch-wound healing assay also, indicated that the samples which incorporating 3 mol% of CuO with or without gamma irradiation had the highest wound closure rate (99.1%, and 98.1%, respectively). The result of cytotoxic assay demonstrated that 100 μg/mL of 0, 3 mol% of CuO before and after gamma irradiation showed non-significant decrease (p > 0.05) in the mean viability percentage towards BJ.1 cells. Therefore, these compositions could be suitable for wound healing applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Eltom, G. Zhong, A. Muhammad, Scaffold techniques and designs in tissue engineering functions and purposes: a review. Adv. Mater. Sci. Eng. (2019). https://doi.org/10.1155/2019/3429527

    Article  Google Scholar 

  2. A.T. Banigo, S.C. Iwuji, N.C. Iheaturu, Application of biomaterials in tissue engineering: a review. J. Chem. Pharm. Res. 11(4), 1–16 (2019)

    CAS  Google Scholar 

  3. J. Kobayashi, T. Okano, Design of temperature-responsive polymer-grafted surfaces for cell sheet preparation and manipulation. Bull. Chem. Soc. Jpn. 92(4), 817–824 (2019)

    CAS  Google Scholar 

  4. H.E. Jazayeri, S.-M. Lee, L. Kuhn, F. Fahimipour, M. Tahriri, L. Tayebi, Polymeric scaffolds for dental pulp tissue engineering: a review. Dent. Mater. 36(2), e47–e58 (2019)

    PubMed  Google Scholar 

  5. S. Kargozar, S. Hamzehlou, F. Baino, Can bioactive glasses be useful to accelerate the healing of epithelial tissues? Mater. Sci. Eng. C 97, 1009–1020 (2019)

    CAS  Google Scholar 

  6. G. Kaur, O.P. Pandey, K. Singh, D. Homa, B. Scott, G. Pickrell, A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J. Biomed. Mater. Res. A 102(1), 254–274 (2014)

    PubMed  Google Scholar 

  7. E. Fiume, J. Barberi, E. Verné, F. Baino, Bioactive glasses: from parent 45S5 composition to scaffold-assisted tissue-healing therapies. J. Funct. Biomater. 9(1), 24 (2018)

    PubMed Central  Google Scholar 

  8. V. Miguez-Pacheco, L.L. Hench, A.R. Boccaccini, Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater. 13, 1–15 (2015)

    CAS  PubMed  Google Scholar 

  9. H. Wang, S. Zhao, J. Zhou, Y. Shen, W. Huang, C. Zhang, M.N. Rahaman, D. Wang, Evaluation of borate bioactive glass scaffolds as a controlled delivery system for copper ions in stimulating osteogenesis and angiogenesis in bone healing. J. Mater. Chem. B 2(48), 8547–8557 (2014)

    CAS  PubMed  Google Scholar 

  10. J. Bejarano, P. Caviedes, H. Palza, Sol–gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass-ceramics. Biomed. Mater. 10(2), 025001 (2015)

    PubMed  Google Scholar 

  11. S. Soltani-Dehnavi, M. Mehdikhani-Nahrkhalaji, M. Rafienia, A. Doostmohammadi, Copper-doped and copper-free bioactive glass nanopowders cytotoxicity and antibacterial activity assessment. Sci. Iran. Trans. F 24(3), 1706 (2017)

    Google Scholar 

  12. Y.F. Goh, A.Z. Alshemary, M. Akram, M.R. Abdul Kadir, R. Hussain, Bioactive glass: an in-vitro comparative study of doping with nanoscale copper and silver particles. Int. J. Appl. Glass Sci. 5(3), 255–266 (2014)

    CAS  Google Scholar 

  13. C. Wu, J. Chang, Multifunctional mesoporous bioactive glasses for effective delivery of therapeutic ions and drug/growth factors. J. Control. Release 193, 282–295 (2014)

    CAS  PubMed  Google Scholar 

  14. A. Hoppe, N.S. Güldal, A.R. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11), 2757–2774 (2011)

    CAS  PubMed  Google Scholar 

  15. C. Wu, Y. Zhou, M. Xu, P. Han, L. Chen, J. Chang, Y. Xiao, Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34(2), 422–433 (2013)

    CAS  PubMed  Google Scholar 

  16. J. Cheng, J. Wang, Y. Yun, Enhanced the glass forming ability and plasticity of Ti–Cu–Be bulk metallic glasses by addition of Zr. Results Mater. 5, 100051 (2020)

    Google Scholar 

  17. Y. Yang, K. Zheng, R. Liang, A. Mainka, N. Taccardi, J.A. Roether, R. Detsch, W.H. Goldmann, S. Virtanen, A.R. Boccaccini, Cu-releasing bioactive glass/polycaprolactone coating on Mg with antibacterial and anticorrosive properties for bone tissue engineering. Biomed. Mater. 13(1), 015001 (2017)

    PubMed  Google Scholar 

  18. S. Kargozar, S. Hamzehlou, F. Baino, Potential of bioactive glasses for cardiac and pulmonary tissue engineering. Materials 10(12), 1429 (2017)

    PubMed Central  Google Scholar 

  19. R.S. Benson, Use of radiation in biomaterials science. Nucl. Instr. Methods Phys. Res. B 191(1–4), 752–757 (2002)

    CAS  Google Scholar 

  20. M. Farag, W. Abd-Allah, A. Ibrahim, Effect of gamma irradiation on drug releasing from nano-bioactive glass. Drug Deliv. Transl. Res. 5(1), 63–73 (2015)

    CAS  PubMed  Google Scholar 

  21. A.M. El-Kady, A.F. Ali, M.M. Farag, Development, characterization, and in vitro bioactivity studies of sol–gel bioactive glass/poly (L-lactide) nanocomposite scaffolds. Mater. Sci. Eng. C 30(1), 120–131 (2010)

    CAS  Google Scholar 

  22. W. Xia, J. Chang, Preparation and characterization of nano-bioactive-glasses (NBG) by a quick alkali-mediated sol–gel method. Mater. Lett. 61(14–15), 3251–3253 (2007)

    CAS  Google Scholar 

  23. C. Milea, C. Bogatu, A. Duta, The influence of parameters in silica sol-gel process. Bull. Transilvania Univ. Brasov Eng. Sci. Ser. I 4(1), 59 (2011)

    Google Scholar 

  24. P. Saravanapavan, L.L. Hench, Low-temperature synthesis, structure, and bioactivity of gel-derived glasses in the binary CaO-SiO2 system. J. Biomed. Mater. Res. 54(4), 608–618 (2001)

    CAS  PubMed  Google Scholar 

  25. M. Pereira, A. Clark, L. Hench, Calcium phosphate formation on sol-gel-derived bioactive glasses in vitro. J. Biomed. Mater. Res. 28(6), 693–698 (1994)

    CAS  PubMed  Google Scholar 

  26. T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15), 2907–2915 (2006)

    CAS  PubMed  Google Scholar 

  27. Y. Sato, D.B. Rifkin, Autocrine activities of basic fibroblast growth factor: regulation of endothelial cell movement, plasminogen activator synthesis, and DNA synthesis. J. Cell Biol. 107(3), 1199–1205 (1988)

    CAS  PubMed  Google Scholar 

  28. M. Harishkumar, Y. Masatoshi, S. Hiroshi, I. Tsuyomu, M. Masugi, Revealing the mechanism of in vitro wound healing properties of Citrus tamurana extract. Biomed. Res. Int. (2013). https://doi.org/10.1155/2013/963457

    Article  PubMed  PubMed Central  Google Scholar 

  29. J.C.W. Tam, K.M. Lau, C.L. Liu, M.H. To, H.F. Kwok, K.K. Lai, C.P. Lau, C.H. Ko, P.C. Leung, K.P. Fung, The in vivo and in vitro diabetic wound healing effects of a 2-herb formula and its mechanisms of action. J. Ethnopharmacol. 134(3), 831–838 (2011)

    PubMed  Google Scholar 

  30. X. Zhang, X. Kang, L. Jin, J. Bai, W. Liu, Z. Wang, Stimulation of wound healing using bioinspired hydrogels with basic fibroblast growth factor (bFGF). Int. J. Nanomed. 13, 3897 (2018)

    CAS  Google Scholar 

  31. A. Grada, M. Otero-Vinas, F. Prieto-Castrillo, Z. Obagi, V. Falanga, Research techniques made simple: analysis of collective cell migration using the wound healing assay. J. Investig. Dermatol. 137(2), e11–e16 (2017)

    CAS  PubMed  Google Scholar 

  32. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65(1–2), 55–63 (1983)

    CAS  PubMed  Google Scholar 

  33. A. Fayad, W. Abd-Allah, F. Moustafa, Effect of gamma irradiation on structural and optical investigations of borosilicate glass doped yttrium oxide. Silicon 10(3), 799–809 (2018)

    CAS  Google Scholar 

  34. A. Salinas, S. Shruti, G. Malavasi, L. Menabue, M. Vallet-Regí, Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glasses. Acta Biomater. 7(9), 3452–3458 (2011)

    CAS  PubMed  Google Scholar 

  35. X. Kesse, C. Vichery, J.-M. Nedelec, Deeper insights into a bioactive glass nanoparticle synthesis protocol to control its morphology, dispersibility, and composition. ACS Omega 4(3), 5768–5775 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  36. N. Li, Q. Jie, S. Zhu, R. Wang, A new route to prepare macroporous bioactive sol–gel glasses with high mechanical strength. Mater. Lett. 58(22–23), 2747–2750 (2004)

    CAS  Google Scholar 

  37. G. Stanciu, I. Sandulescu, B. Savu, S. Stanciu, K. Paraskevopoulos, X. Chatzistavrou, E. Kontonasaki, P. Koidis, Investigation of the hydroxyapatite growth on bioactive glass surface. J. Biomed. Pharm. Eng. 1(1), 34–39 (2007)

    Google Scholar 

  38. E. Khalil, F. El-Batal, Y. Hamdy, H. Zidan, M. Aziz, A. Abdelghany, UV-Visible and IR spectroscopic studies of gamma irradiated transition metal doped lead silicate glasses. Silicon 2(1), 49–60 (2010)

    CAS  Google Scholar 

  39. A. Abdelghany, H. ElBatal, A. Okasha, R. Ramadan, A. Wassel, A. Menazea, Compatibility and bone bonding efficiency of gamma irradiated Hench’s bioglass. Silicon 10(4), 1533–1541 (2018)

    CAS  Google Scholar 

  40. S. Ramesh, C. Tan, M. Hamdi, I. Sopyan, W. Teng, The influence of Ca/P ratio on the properties of hydroxyapatite bioceramics. In: International conference on smart materials and nanotechnology in engineering. International Society for Optics and Photonics (2007), p. 64233A

  41. A. Milheiro, K. Nozaki, C.J. Kleverlaan, J. Muris, H. Miura, A.J. Feilzer, In vitro cytotoxicity of metallic ions released from dental alloys. Odontology 104(2), 136–142 (2016)

    CAS  PubMed  Google Scholar 

  42. A. Raz-Pasteur, E. Mazor, I. Berdicevsky, M. Shemesh, M. Zilberman, Effect of gamma-irradiation sterilization on the antibacterial efficacy and the properties of a hybrid burn dressing. JSM Burns Trauma 1, 1008–1016 (2016)

    Google Scholar 

  43. M. Bini, S. Grandi, D. Capsoni, P. Mustarelli, E. Saino, L. Visai, SiO2−P2O5−CaO glasses and glass-ceramics with and without ZnO: relationships among composition, microstructure, and bioactivity. J. Phys. Chem. C 113(20), 8821–8828 (2009)

    CAS  Google Scholar 

  44. V. Mortazavi, M.M. Nahrkhalaji, M. Fathi, S. Mousavi, B.N. Esfahani, Antibacterial effects of sol-gel-derived bioactive glass nanoparticle on aerobic bacteria. J. Biomed. Mater. Res. A 94(1), 160–168 (2010)

    CAS  PubMed  Google Scholar 

  45. E.A. Varmette, J.R. Nowalk, L.M. Flick, M.M. Hall, Abrogation of the inflammatory response in LPS-stimulated RAW 264.7 murine macrophages by Zn-and Cu-doped bioactive sol–gel glasses. J. Biomed. Mater. Res. A 90(2), 317–325 (2009)

    PubMed  Google Scholar 

  46. L. Milkovic, A. Hoppe, R. Detsch, A.R. Boccaccini, N. Zarkovic, Effects of Cu-doped 45S5 bioactive glass on the lipid peroxidation-associated growth of human osteoblast-like cells in vitro. J. Biomed. Mater. Res. A 102(10), 3556–3561 (2014)

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the National Research Centre, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA) for the possibility to use their equipment and facilities. And also, deepest thanks Dr. Eman Fayez Said Taha, Health Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority (EAEA), for her cooperation and encouragement through this study. Recommendation: Further studies should be done to the stage of pre-clinical and clinical trials. Possible medical treatments can be tested in vitro before beginning in vivo studies by studying the wound healing process.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Manar M. Ahmed or Wesam M. Abd-Allah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, M.M., Abd-Allah, W.M., Omar, A.E. et al. The Dual Effect of Copper and Gamma Irradiation on Chronic Wound Healing of Nanobioactive Glass. J Inorg Organomet Polym 30, 3646–3657 (2020). https://doi.org/10.1007/s10904-020-01501-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-020-01501-0

Keywords

Navigation