Skip to main content
Log in

Synthesis of enhanced (Sn\(_{0.05}\)Sb\(_{0.15}\))\(_2\)(Te\(_{0.02}\)Se\(_{0.18}\))\(_3\) crystals for multi-sensing applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Crystals of (Sn\(_{0.05}\)Sb\(_{0.15}\))\(_2\)(Te\(_{0.02}\)Se\(_{0.18}\))\(_3\) have been grown by the direct vapor transport technique. The challenge of intrinsic low electrical conductivity of antimony triselenide (Sb\(_2\)Se\(_3\)) was overcome by using tin (Sn) and tellurium (Te) as doping agents to synthesize (Sn\(_{0.05}\)Sb\(_{0.15}\))\(_2\)(Te\(_{0.02}\)Se\(_{0.18}\))\(_3\) alloy. The chemical composition and surface topology analysis have been carried out using energy dispersive analysis of X-ray and scanning electron microscope, respectively. The structural properties of grown crystals were characterized by powder X-ray diffraction (XRD) technique and have been compared with data of Sb\(_2\)Se\(_3\) crystal. The XRD analysis revealed the orthorhombic structure of grown crystals. The spot pattern in the selected area electron diffraction image indicates good crystalline nature of grown crystals. Different phonon modes were analyzed using Raman spectroscopy. The optical properties have been characterized using diffuse reflectance spectroscopy. The photo-detection and trap depth parameters were examined for different wavelengths and illumination intensities. Also, non-oxide semiconductor-based gas sensor and human breathing sensor have been studied. The effect of doping was clearly seen in the enhancement of sensing properties of the grown crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and material

The dataset used and analyzed during the current study is available from the corresponding author on reasonable request.

References

  1. Y. Zhou, L. Wang, S. Chen, S. Qin, X. Liu, J. Chen, D.J. Xue, M. Luo, Y. Cao, Y. Cheng et al., Nat. Photonics 9(6), 409 (2015)

    Article  ADS  Google Scholar 

  2. Y. Zhou, M. Leng, Z. Xia, J. Zhong, H. Song, X. Liu, B. Yang, J. Zhang, J. Chen, K. Zhou et al., Adv. Energy Mater. 4(8), 1301846 (2014)

    Article  Google Scholar 

  3. R. Huang, J. Zhang, F. Wei, L. Shi, T. Kong, G. Cheng, Adv. Func. Mater. 24(23), 3581 (2014)

    Article  Google Scholar 

  4. S. Chen, X. Qiao, F. Wang, Q. Luo, X. Zhang, X. Wan, Y. Xu, X. Fan, Nanoscale 8(4), 2277 (2016)

    Article  ADS  Google Scholar 

  5. T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, D. Golberg, Adv. Func. Mater. 20(24), 4233 (2010)

    Article  Google Scholar 

  6. A. Mavlonov, T. Razykov, F. Raziq, J. Gan, J. Chantana, Y. Kawano, T. Nishimura, H. Wei, A. Zakutayev, T. Minemoto et al., Sol. Energy 201, 227 (2020)

    Article  ADS  Google Scholar 

  7. Y. Liang, Y. Wang, J. Wang, S. Wu, D. Jiang, J. Lian, RSC Adv. 6(14), 11501 (2016)

    Article  ADS  Google Scholar 

  8. T.Y. Ko, M. Shellaiah, K.W. Sun, Sci. Rep. 6(1), 1 (2016)

    Article  Google Scholar 

  9. L. Zhang, Y. Li, C. Li, Q. Chen, Z. Zhen, X. Jiang, M. Zhong, F. Zhang, H. Zhu, ACS Nano 11(12), 12753 (2017)

    Article  Google Scholar 

  10. X. Wang, S.S. Yee, W.P. Carey, Sens. Actuators B Chem. 25(1–3), 454 (1995)

    Article  Google Scholar 

  11. D. Choi, Y. Jang, J. Lee, G.H. Jeong, D. Whang, S.W. Hwang, K.S. Cho, S.W. Kim, Sci. Rep. 4, 6714 (2014)

    Article  ADS  Google Scholar 

  12. R.J. Mehta, C. Karthik, W. Jiang, B. Singh, Y. Shi, R.W. Siegel, T. Borca-Tasciuc, G. Ramanath, Nano Lett. 10(11), 4417 (2010)

    Article  ADS  Google Scholar 

  13. T. Zhai, Y. Ma, L. Li, X. Fang, M. Liao, Y. Koide, J. Yao, Y. Bando, D. Golberg, J. Mater. Chem. 20(32), 6630 (2010)

    Article  Google Scholar 

  14. S. Marian, K. Potje-Kamloth, D. Tsiulyanu, H.D. Liess, Thin Solid Films 359(1), 108 (2000)

    Article  ADS  Google Scholar 

  15. R.D. Shannon, Acta crystallographica section A: crystal physics, diffraction, theoretical and general crystallography 32(5), 751 (1976)

  16. Z. Yi, Y. Qian, S. Jiang, Y. Li, N. Lin, Y. Qian, Chem. Eng. J. 379, 122352 (2020)

    Article  Google Scholar 

  17. R. Vadapoo, S. Krishnan, H. Yilmaz, C. Marin, Physica Status Solidi (b) 248(3), 700 (2011)

    Article  ADS  Google Scholar 

  18. K. Chandrasekharan, A. Kunjomana, Turk. J. Phys. 33(4), 209 (2009)

    Google Scholar 

  19. S. Chen, X. Qiao, Z. Zheng, M. Cathelinaud, H. Ma, X. Fan, X. Zhang, J. Mater. Chem. C 6(24), 6465 (2018)

    Article  Google Scholar 

  20. G. Williamson, W. Hall, Acta Metall. 1(1), 22 (1953)

    Article  Google Scholar 

  21. F.W. Gayle, F.S. Biancaniello, Nanostruct. Mater. 6(1–4), 429 (1995)

    Article  Google Scholar 

  22. E.R. Shaaban, N. Afify, A. El-Taher, J. Alloys Compd. 482(1–2), 400 (2009)

    Article  Google Scholar 

  23. P. Vidal-Fuentes, M. Guc, X. Alcobe, T. Jawhari, M. Placidi, A. Pérez-Rodríguez, E. Saucedo, V.I. Roca, 2D Mater. 6(4), 045054 (2019)

    Article  Google Scholar 

  24. H. Song, T. Li, J. Zhang, Y. Zhou, J. Luo, C. Chen, B. Yang, C. Ge, Y. Wu, J. Tang, Adv. Mater. 29(29), 1700441 (2017)

    Article  Google Scholar 

  25. S.H. Chaki, M.D. Chaudhary, M. Deshpande, Mater. Res. Bull. 63, 173 (2015)

    Article  Google Scholar 

  26. S. Wang, N. Ye, J. Am. Chem. Soc. 133(30), 11458 (2011)

    Article  Google Scholar 

  27. F. Shan, B. Kim, G. Liu, Z. Liu, J. Sohn, W. Lee, B. Shin, Y. Yu, J. Appl. Phys. 95(9), 4772 (2004)

    Article  ADS  Google Scholar 

  28. Z.M. Gibbs, A. LaLonde, G.J. Snyder, New J. Phys. 15(7), 075020 (2013)

    Article  ADS  Google Scholar 

  29. S.G. Rathod, R. Bhajantri, V. Ravindrachary, P. Pujari, G. Nagaraja, J. Naik, V. Hebbar, H. Chandrappa, Bull. Mater. Sci. 38(5), 1213 (2015)

    Article  Google Scholar 

  30. M. Iovu, S. Shutov, V. Arkhipov, G. Adriaenssens, J. Non-Cryst. Solids 299, 1008 (2002)

    Article  ADS  Google Scholar 

  31. C. Vyas, P. Pataniya, C.K. Zankat, V. Pathak, K. Patel, G. Solanki, Mater. Sci. Semicond. Process. 71, 226 (2017)

    Article  Google Scholar 

  32. H. Desai, J. Dhimmar, B. Modi, Optik 127(16), 6377 (2016)

    Article  ADS  Google Scholar 

  33. J.T. Randall, M.H.F. Wilkins, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 184(999), 365 (1945)

    ADS  Google Scholar 

  34. J. Yao, Z. Zheng, G. Yang, ACS Appl. Mater. Interfaces 8(20), 12915 (2016)

    Article  Google Scholar 

  35. C.H. Ge, H.L. Li, X.L. Zhu, A.L. Pan, Chin. Phys. B 26(3), 034208 (2017)

    Article  ADS  Google Scholar 

  36. M. Yu, H. Li, H. Liu, F. Qin, F. Gao, Y. Hu, M. Dai, L. Wang, W. Feng, P. Hu, ACS Appl. Mater. Interfaces 10(50), 43299 (2018)

    Article  Google Scholar 

  37. M. Al-Kuhaili, M. Mekki, S. Abdalla, Thin Solid Films 686, 137412 (2019)

    Article  ADS  Google Scholar 

  38. X. Bao, R. James, T. Schlesinger, in Semiconductors and Semimetals, vol. 43 (Elsevier, 1995), pp. 169–218

  39. J. Bornstein, R.H. Bube, J. Appl. Phys. 61(7), 2676 (1987)

    Article  ADS  Google Scholar 

  40. R.H. Bube et al., Photoconductivity of Solids (RE Krieger Pub. Co., New York, 1978)

    MATH  Google Scholar 

  41. P. Patel, J. Dhimmar, B. Modi, H. Desai, J. Mater. Sci. Mater. Electron. 1–9 (2020)

  42. R. Sarma, N. Mazumdar, Indian J. Phys. 78, 389 (2004)

    Google Scholar 

  43. C. Chen, D.C. Bobela, Y. Yang, S. Lu, K. Zeng, C. Ge, B. Yang, L. Gao, Y. Zhao, M.C. Beard et al., Front. Optoelectron. 10(1), 18 (2017)

    Article  Google Scholar 

  44. M. Aven, J.S. Prener, Physics and Chemistry of II–VI Compounds (Noord-Hollandsche UM, New York, 1967)

    Google Scholar 

  45. B. Meyer, W. Stadler, J. Cryst. Growth 161(1–4), 119 (1996)

    Article  ADS  Google Scholar 

  46. B. Srivastava, S. Singh, Indian J. Pure Appl. Phys. 8(11), 716 (1970)

    Google Scholar 

  47. A. Grabowski, M. Nowak, P. Tzanetakis, Thin Solid Films 283(1–2), 75 (1996)

    Article  ADS  Google Scholar 

  48. C.K. Zankat, P. Pataniya, G. Solanki, K. Patel, V. Pathak, Mater. Lett. 221, 35 (2018)

    Article  Google Scholar 

  49. P. Perumal, R.K. Ulaganathan, R. Sankar, Y.M. Liao, T.M. Sun, M.W. Chu, F.C. Chou, Y.T. Chen, M.H. Shih, Y.F. Chen, Adv. Func. Mater. 26(21), 3630 (2016)

    Article  Google Scholar 

  50. A. Quigg, W.C. Chin, C.S. Chen, S. Zhang, Y. Jiang, A.J. Miao, K.A. Schwehr, C. Xu, P.H. Santschi, ACS Sustain. Chem. Eng. 1(7), 686 (2013)

    Article  Google Scholar 

  51. H. Desai, P. Patel, J. Dhimmar, B. Modi, Solid State Commun. 113910 (2020)

  52. S. Mishra, R. Srivastava, S. Prakash, R. Yadav, A. Panday, Opto-Electron. Rev. 18(4), 467 (2010)

    Article  ADS  Google Scholar 

  53. P.K. Kalita, B. Sarma, H. Das, Bull. Mater. Sci. 26(6), 613 (2003)

    Article  Google Scholar 

  54. P. Shankar, J.B.B. Rayappan, Sci. Lett. J. 4(4), 126 (2015)

    Google Scholar 

  55. G.F. Fine, L.M. Cavanagh, A. Afonja, R. Binions, Sensors 10(6), 5469 (2010)

    Article  ADS  Google Scholar 

  56. Y. He, T. Zhang, W. Zheng, R. Wang, X. Liu, Y. Xia, J. Zhao, Sens. Actuat. B Chem. 146(1), 98 (2010)

    Article  Google Scholar 

  57. B.M. Kulwicki, J. Am. Ceram. Soc. 74(4), 697 (1991)

    Article  Google Scholar 

  58. J.H. Anderson Jr., G.A. Parks, J. Phys. Chem. 72(10), 3662 (1968)

    Article  Google Scholar 

  59. Y.C. Yeh, T.Y. Tseng, D.A. Chang, J. Am. Ceram. Soc. 73(7), 1992 (1990)

    Article  Google Scholar 

  60. T.M. Swager, Acc. Chem. Res. 31(5), 201 (1998)

    Article  Google Scholar 

  61. P.K. Kannan, R. Saraswathi, J.B.B. Rayappan, Sens. Actuat. A 164(1–2), 8 (2010)

    Google Scholar 

  62. V. Solanki, S. Krupanidhi, K. Nanda, ACS Appl. Mater. Interfaces 9(47), 41428 (2017)

    Article  Google Scholar 

  63. M. Righettoni, A. Tricoli, S.E. Pratsinis, Anal. Chem. 82(9), 3581 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

Dr. P. B. Patel and Dr. H. N. Desai thanks IPR-UGC Section, Veer Narmad South Gujarat University, Surat, Gujarat, India for financial assistance [Project No. IPR/UGC/18480/2021 and IPR/UGC/18481/2021]. Authors acknowledge the support from Shri Pankajbhai Gijubhai Patel (President of KVNM) and the management of C. B. Patel Computer College and J. N. M. Patel Science College.

Funding

This work has been funded by IPR-UGC, Veer Narmad South Gujarat University under the grant numbers IPR/UGC/18480/2021 and IPR/UGC/18481/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. B. Patel.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, H.N., Patel, H.M., Sikligar, S.P. et al. Synthesis of enhanced (Sn\(_{0.05}\)Sb\(_{0.15}\))\(_2\)(Te\(_{0.02}\)Se\(_{0.18}\))\(_3\) crystals for multi-sensing applications. Appl. Phys. A 128, 92 (2022). https://doi.org/10.1007/s00339-021-05201-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05201-5

Keywords

Navigation