Skip to main content
Log in

Impact of radiation on CoO-doped borate glass: lead-free radiation shielding

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Changes in optical properties transparency of pure and cobalt oxide (CoO)-doped lithium borate glasses have been investigated for fresh and γ-irradiated samples. These changes either in the transparency or color due to the variation of Co concentration or γ-irradiation doses indicated changes occurred inside the glass matrix. The ability of this glass to shield gamma ray, neutron, electrons, and protons was also examined. The calculations of optical band gap values showed a decrease, with the increase in CoO concentration, while the refractive index increased. Mass attenuation coefficient (MAC) of glasses was measured at 662, 1173, 1275 and 1333 keV energies by utilizing NaI(Tl) detector; also, theoretically by using Phy-X/PSD program derivative gamma shielding parameters have been studied. It was found that an increase in CoO % makes increment of gamma attenuation. Moreover, adding CoO improves neutron absorption due to the bigger cross section of Co atoms. Charged particles as (proton and electron); glass samples give good results at 10 keV‒10 MeV kinetic energy range computed by SRIM code. This paper provides complementary results to the authors of previous research studies that examined this glass as an electron beam irradiation dosimeter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Rashad, A.M. Ali, M.I. Sayyed, H.H. Somaily, H. Algarni, Y.S. Rammah, Radiation attenuation and optical features of lithium borate glasses containing barium: B2O3. Li2O. BaO, Ceram Int. 46, 21000–21007 (2020). https://doi.org/10.1016/j.ceramint.2020.05.165

    Article  Google Scholar 

  2. M. Ishii, Y. Kuwano, S. Asaba, T. Asai, M. Kawamura, N. Senguttuvan, H.M. Shimizu, Luminescence of doped lithium tetraborate single crystals and glass. Radiat. Meas. 38, 571–574 (2004). https://doi.org/10.1016/j.radmeas.2004.03.017

    Article  Google Scholar 

  3. S. Dalal, S. Khasa, M.S. Dahiya, A. Yadav, A. Agarwal, S. Dahiya, Optical and thermal investigations on vanadyl doped zinc lithium borate glasses. J. Asian Ceram. Soc. 3, 234–239 (2015). https://doi.org/10.1016/j.jascer.2015.03.004

    Article  Google Scholar 

  4. A.C. Rimbach, F. Steudel, B. Ahrens, S. Schweizer, Structural and optical properties of Dy3+-doped lithium borate glass, Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B, 59 (2018) 93–96.‏ https://doi.org/10.13036/17533562.59.2.027.

  5. A.K. Yadav, P. Singh, A review of the structures of oxide glasses by Raman spectroscopy. RSC Adv. 5, 67583–67609 (2015). https://doi.org/10.1039/C5RA13043C

    Article  ADS  Google Scholar 

  6. E. Kavaz, H.O. Tekin, N.Y. Yorgun, Ö.F. Özdemir, M.I. Sayyed, Structural and nuclear radiation shielding properties of bauxite ore doped lithium borate glasses: experimental and Monte Carlo study. Radiat. Phys. Chem. 162, 187–193 (2019). https://doi.org/10.1016/j.radphyschem.2019.05.019

    Article  ADS  Google Scholar 

  7. D.D. Ramteke, H.C. Swart, R.S. Gedam, Spectroscopic properties of Pr3+ ions embedded in lithium borate glasses. Physica B 480, 111–115 (2016). https://doi.org/10.1016/j.physb.2015.08.003

    Article  ADS  Google Scholar 

  8. O.I. Sallam, A.M. Madbouly, N.A. Elalaily, F.M. Ezz-Eldin, Physical properties and radiation shielding parameters of bismuth borate glasses doped transition metals. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.156056

    Article  Google Scholar 

  9. F. Zaman, J. Kaewkhao, G. Rooh, N. Srisittipokakun, H.J. Kim, Optical and luminescence properties of Li2O-Gd2O3-MO-B2O3-Sm2O3 (MO=Bi2O3, BaO) glasses. J. Alloys Compd. 676, 275–285 (2016). https://doi.org/10.1016/j.jallcom.2016.03.176

    Article  Google Scholar 

  10. Y. Tanabe, S. Sugano, On the absorption spectra of complex ions II. J. Phys. Soc. Jpn. 9(5), 766–779 (1954). https://doi.org/10.1143/JPSJ.9.766

    Article  ADS  Google Scholar 

  11. C.-M. Lee, Y.H. Lee, K.J. Lee, Cracking effect on gamma-ray shielding performance in concrete structure. Prog. Nucl. Energy J. 49, 303 (2007)

    Article  Google Scholar 

  12. A. Saeed, Y.H. Elbashar, R.M. El shazly, Optical properties of high density barium borate glass for gamma ray shielding applications. Opt. Quant. Electron. 48, 1–10 (2016). https://doi.org/10.1007/s11082-015-0274-3

    Article  Google Scholar 

  13. J. Kaewkhao, T. Korkut, H. Korkut, B. Aygün, P. Yasaka, S. Tuscharoen, A. Karabulut, Monte Carlo design and experiments on the Neutron shielding performances of B 2 O 3-ZnO-Bi 2 O 3 glass system. Glass Phys. Chem 43, 560–563 (2017). https://doi.org/10.1134/S1087659617060050

    Article  Google Scholar 

  14. G. Lakshminarayana, Y. Elmahroug, M.G. Ashok Kumar, D.-E. Dong, J. Yoon, T. Park, Li2O–B2O3–Bi2O3 glasses: gamma-rays and neutrons attenuation study using Par Shield/WinXCOM program and Geant4 and penelope codes. Appl. Phys. A 126, 249–265 (2020). https://doi.org/10.1007/s00339-020-3418-7

    Article  ADS  Google Scholar 

  15. G. Lakshminarayana, S.O. Baki, Kawa M.Kaky, M.I. Sayyed, H.O. Tekin, A. Lira, I.V. Kityk, M.A. Mahdi (2017), Investigation of structural, thermal properties and shielding parameters for multi component borate glasses for gamma and neutron radiation shielding applications, J. Non-Cryst.Solids 471, 222–237. https://doi.org/10.1016/j.jnoncrysol.2017.06.001

  16. V.P. Singh, N. Badiger, J. Kaewkhao, Radiation shielding competence of silicate and borate heavy metal oxide glasses: comparative study. J. Non-Cryst. Solids 404, 167 (2014). https://doi.org/10.1016/j.jnoncrysol.2014.08.003

    Article  ADS  Google Scholar 

  17. S akar, E ¨Ozpolat ¨OF, B Alım, MI Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry, Radiat. Phys. Chem. 166 (2020), 108496. https://doi.org/10.1016/j.radphyschem.2019.108496

  18. E.A.M. Madbouly, H.A. Alazab, E. Borham, F.M. Ezz-ElDin, Study of gamma radiation dosimeter and radiation shielding parameters of commercial window glass. Appl. Phys. A 127, 761 (2021). https://doi.org/10.1007/s00339-021-04889-9

    Article  ADS  Google Scholar 

  19. E.M. Abou Hussein, A.M. Madbouly, F.M. EzzEldin, Characterization of some radiation shielding, optical, and physical properties of fluorophosphate glasses modified by Sm3+. J Mater Sci: Mater Electron 32, 25933–25951 (2021). https://doi.org/10.1007/s10854-021-05368-w

    Article  Google Scholar 

  20. K.V. Sathish, H.C. Manjunatha, L. Seenappa, K.N. Sridhar, N. Nagaraj, S. Alfred Cecil Raj, Specific absorbed fraction of energy of silicon-boron alloys. Indian J. Pure Appli. Phys. 58, 213–217 (2020)

    Google Scholar 

  21. O.I. Sallam, A. Abdel-Galil, N.L. Moussa, Optimizing of optical and structure characters of borate glasses by different concentration of CoO: electron beam irradiation dosimetry. Mater. Chem. Phys. (2021). https://doi.org/10.1016/j.matchemphys.2021.124767

    Article  Google Scholar 

  22. O. Annalakshmi, M.T. Jose, U. Madhusoodanan, J. Sridevi, B. Venkatraman, G. Amarendra, A.B. Mandal, Radiation-induced defects in manganese- doped lithium tetraborate phosphor. Radiat. Protect. Dosim. (2014). https://doi.org/10.1093/rpd/ncu116

    Article  Google Scholar 

  23. S. Nimitha Prabhu, H.M. Somashekarappa, M.I. Sayyed, M.S. Abdullah Alhuthali, Y. Al-Hadeethi, Sudha D. Kamath (2021), 0.25–30 kGy γ Irradiation-induced modifications on the density, optical absorption, thermo- and photo-luminescence of the 10BaO–20ZnO–20LiF-49.3B2O3–0.7Er2O3 glass, J. Lumin. 231, 117820. https://doi.org/10.1016/j.jlumin.2020.117820

  24. O.I. Sallam, F.M. Ezz-Eldin, N.A. Elalaily, Influence of doping transition metals and irradiation on some physical properties of borate glass. Opt. Quant. Electron. 52, 1–20 (2020). https://doi.org/10.1007/s11082-020-02319-3

    Article  Google Scholar 

  25. J.F. Stebbins, P. Zhao, S. Kroeker, Non-bridging oxygens in borate glasses: characterization by 11B and 17O MAS and 3QMAS NMR. Solid State Nucl. Magn. Reson. 16, 9–19 (2000). https://doi.org/10.1016/s0926-2040(00)00050-3

    Article  Google Scholar 

  26. P. Beekenkamp, Color centers in borate, phosphate and borophosphate glasses (Technical university, Eindhoven, Philips Res, Thesis, 1965)

    Google Scholar 

  27. M.A. Marzouk, I.M. Elkashef, H.A. Elbatal, Impact effects of gamma irradiation on the optical and FT infrared absorption spectra of some Nd-doped soda lime phosphate glasses. J. Mol. Struct. 1157, 341–347 (2017). https://doi.org/10.1016/j.molstruc.2017.12.066

    Article  ADS  Google Scholar 

  28. N. Veissid, C. An, A. Silva, J. Souza, Gap energy studied by optical transmittance in lead 496 iodide monocrystals grown by Bridgman’s method. Mater. Res. 2, 279–281 (1999). https://doi.org/10.1590/S1516-14391999000400007

    Article  Google Scholar 

  29. M.G. Moustafa, M.Y. Hassaan, Optical and dielectric properties of transparent ZrO2–TiO2–Li2B4O7 glass system. J. Alloys Compd. 710, 312–322 (2017). https://doi.org/10.1016/j.jallcom.2017.03.192

    Article  Google Scholar 

  30. F. Ahmad, Study the effect of alkali/alkaline earth addition on the environment of borochromate glasses by means of spectroscopic analysis. J. Alloys Compd. 586, 605–610 (2014). https://doi.org/10.1016/j.jallcom.2013.10.105

    Article  Google Scholar 

  31. M.I. Sayyed, M. Rashad, Y.S. Rammah, Impact of Ag2O on linear, nonlinear optical and gamma-ray shielding features of ternary silver vanadio-tellurite glasses: TeO2–V2O5–Ag2O. Ceram Int. 46, 22964–22972 (2020). https://doi.org/10.1016/j.ceramint.2020.06.071

    Article  Google Scholar 

  32. J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8(10), 569–585 (1972)

    Article  ADS  Google Scholar 

  33. A. Abdel-Galil, N.L. Moussa, I.S. Yahia, Synthesis and optical characterization of nanocrystalline fluorine-doped tin oxide films: conductive window layer for optoelectronic applications. Appl. Phys. A 127, 474 (2021). https://doi.org/10.1007/s00339-021-04632-4

    Article  ADS  Google Scholar 

  34. V. Dimitrov, T. Komatsu, An interpretation of optical properties of oxides and oxide glasses in terms of the electronic polarizability and average single bond strength. J. Chemi. Technol. Metall. 45(3), 219 (2010)

    Google Scholar 

  35. P. Chimalawong, K. Kirdsiri, J. Kaewkhao, P. Limsuwan, Investigation on the physical and optical properties of Dy3+ doped soda-lime-silicate glasses. Procedia Eng. 32, 690–698 (2012)

    Article  Google Scholar 

  36. J.E. Shelby, Introduction to glass science and technology, 2nd edn. (The royal society of chemistry, Cambridge, United Kingdom, 2005)

    Google Scholar 

  37. T.S. Moss, Relations between the refractive index and energy gap of semiconductors. Phys. Status Solidi B. 131, 415–427 (1985)

    Article  ADS  Google Scholar 

  38. A.ŞK.I.N. Ali, D.A.L. Murat, Investigation of the gamma ray shielding behaviour of (90–x)TeO2— xMoO3—10ZnO glass system using geant4 simulation code and WinXCOM database. Cumhuriyet Sci. J. 40(3), 742–752 (2019). https://doi.org/10.17776/csj.560193

    Article  Google Scholar 

  39. W. Chaiphaksa, P. Limkitjaroenporn, H.J. Kim, J. Kaewkhao, The mass attenuation coefficients, effective atomic numbers and effective electron densities for GAGG: Ce and CaMoO4 scintillators. Prog. Nucl. Energy 92, 48–53 (2016). https://doi.org/10.1016/j.pnucene.2016.06.010

    Article  Google Scholar 

  40. M. Almatari, S.A.M. Issa, M.G. Dong, M.I. Sayyed, R. Ayad, Comparison between MCNP5, Geant4 and experimental data for gamma rays attenuation of PbO–BaO–B2O3 glasses. Heliyon 5, e02364 (2019). https://doi.org/10.1016/j.heliyon.2019.e02364

    Article  Google Scholar 

  41. E.M. Abou Hussein, A.M. Madbouly, N.A. El Alaily, Gamma ray interaction of optical, chemical, physical behavior of bismuth silicate glasses and their radiation shielding proficiency using Phy-X/PSD program. J. Non-Crystalline Solids 570, 121021 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.121021

    Article  Google Scholar 

  42. A.M. El-Khayatt, Calculation of fast neutron removal cross-sections for some compounds and materials. Ann. Nucl. Energy 37(2), 218–222 (2010). https://doi.org/10.1016/j.anucene.2009.10.022

    Article  Google Scholar 

  43. J.F. Ziegler, M.D. Ziegler, J.P. Biersack, SRIM—The stopping and range of ions in matter (2010). Nuclear Instrum. Methods Phys. Res. Sect.B: Beam Interact. Mater. Atoms 268, 1818–1823 (2010). https://doi.org/10.1016/j.nimb.2010.02.091

    Article  ADS  Google Scholar 

  44. J.F. Ziegler, SRIM-2003. Nucl. Instrum. Methods Phys. Res., Sect. B 219, 1027–1036 (2004). https://doi.org/10.1016/j.nimb.2004.01.208

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Madbouly.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sallam, O.I., Madbouly, A.M., Moussa, N.L. et al. Impact of radiation on CoO-doped borate glass: lead-free radiation shielding. Appl. Phys. A 128, 70 (2022). https://doi.org/10.1007/s00339-021-05190-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05190-5

Keywords

Navigation