Skip to main content
Log in

Growth and properties of nanocrystalline TiN—amorphous Si3N4 composite thin films deposited on IN718 and phynox alloy substrates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

TiN/Si3N4 composite thin films were deposited on Inconel718 (IN718) and flexible Phynox alloy substrates by the co-sputtering process at room temperature and 250 °C. The TiN films were sputtered from a Ti target, while the Si3N4 films were sputtered from either a Si or a Si3N4 target. The aim is to prepare composite thin films of nanocrystalline TiN and amorphous Si3N4 under the same conditions of pressure and temperature. This objective was achieved at room temperature and 250 °C substrate temperature on both the substrates mentioned above, as confirmed from x-ray and selected area electron diffraction patterns when the targets used were Ti and Si3N4. Significantly, crystallization of Si3N4 phase was observed under favorable conditions when Si was the target. All the films exhibit columnar microstructure comprising layers of TiN and Si3N4. Films deposited from the Si target crystallize at a lower thickness than those deposited from the Si3N4 target. There is a substrate type, substrate temperature, and deposition time dependence of grain size. The films on Phynox substrates have smaller grain sizes (50–60 nm) in comparison with films on IN718 substrates (100–120 nm). The films deposited on the IN718 substrates display higher surface roughness than the films deposited on the Phynox substrates which, in turn, depended on the target from which the Si3N4 films were deposited. The hardness of composite films in which the Si3N4 is deposited from the Si target is higher than that for the films deposited from the Si3N4 target. The present work, thus, describes a technique for the single layer nanocomposite thin films deposition with properties that can be tuned by the type of target used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Cavaleiro, Nanostructured coatings (Springer, New York, NY, 2006)

    Book  Google Scholar 

  2. M.A. Samad, Polymers 13, 608 (2021). https://doi.org/10.3390/polym13040608

    Article  Google Scholar 

  3. H.D. Mejía, V.D. Perea, G.G. Bejarano, Surf. Coat. Technol. 381, 125095 (2020). https://doi.org/10.1016/j.surfcoat.2019.125095

    Article  Google Scholar 

  4. J.C. Colombo-Pulgarín, A.J. Sánchez Egea, D.J. Celentano, D.M. Krahmer, V. Martynenko, N. López de Lacalle, Materials 14, 4626 (2021). https://doi.org/10.3390/ma14164626

    Article  ADS  Google Scholar 

  5. B. Cantor, C.M. Allen, R. Dunin-Burkowski, M.H. Green, J.L. Hutchinson, K.A.Q. O’Reilly, A.K. Petford-Long, P. Schumacher, J. Sloan, P.J. Warren, Scr. Mater. 44, 2055 (2001). https://doi.org/10.1016/S1359-6462(01)00891-0

    Article  Google Scholar 

  6. J.L. Solis, S. Saukko, L. Kish, C.G. Granqvist, V. Lantto, Thin Solid Films 391, 255 (2001). https://doi.org/10.1016/S0040-6090(01)00991-9

    Article  ADS  Google Scholar 

  7. R.A. Andrievski, A.M. Glezer, Scr. Mater. 44, 1621 (2001). https://doi.org/10.1016/S1359-6462(01)00786-2

    Article  Google Scholar 

  8. S. Veprek, A.S. Argon, J. Vac. Sci. Technol. B. 20, 650 (2002). https://doi.org/10.1116/1.1459722

    Article  Google Scholar 

  9. S. Zhang, Y. Fu, H. Du, X.T. Zeng, Y.C. Liu, Surf. Coat. Technol. 162, 42 (2003). https://doi.org/10.1016/S0257-8972(02)00561-3

    Article  Google Scholar 

  10. S.G. Prilliman, S.M. Clark, A.P. Alivisatos, P. Karvankova, S. Vepřek, Mater. Sci. Eng. A 437, 379 (2006). https://doi.org/10.1016/j.msea.2006.07.126

    Article  Google Scholar 

  11. M.M. Hawkeye, M.J. Brett, J. Vac. Sci. Technol. A 25, 1317 (2007). https://doi.org/10.1116/1.2764082

    Article  Google Scholar 

  12. M. Mittal, R.K. Niles, E.M. Furst, Nanoscale 2, 2237 (2010). https://doi.org/10.1039/C0NR00275E

    Article  ADS  Google Scholar 

  13. R. Kumar, G. Kumar, O. Al-Dossary, A. Umar, Mater. Express 5, 3 (2015). https://doi.org/10.1166/mex.2015.1204

    Article  Google Scholar 

  14. R. Sliz, C. Eneh, Y. Suzuki, J. Czajkowski, T. Fabritiu, S.P. Kathirgamanathan, A. Nathan, R. Myllyla, G. Jabbour, RSC Adv. 5, 12409 (2015). https://doi.org/10.1039/C4RA16018E

    Article  ADS  Google Scholar 

  15. M. Weber, E. Coy, I. Iatsunskyi, L. Yate, P. Miele, M. Bechelany, CrystEngComm 19, 6089 (2017). https://doi.org/10.1039/C7CE01357D

    Article  Google Scholar 

  16. F. Ma, J. Li, Z. Zeng, Y. Gao, Appl. Surf. Sci. 428, 404 (2018). https://doi.org/10.1016/j.apsusc.2017.09.166

    Article  ADS  Google Scholar 

  17. D. Boing, A.J. de Oliveira, R.B. Schroeter, Wear 416–417, 54–61 (2018). https://doi.org/10.1016/j.wear.2018.10.007

    Article  Google Scholar 

  18. J.C. Sánchez-López, S. Dominguez-Meister, T.C. Rojas, M. Colasuonno, M. Bazzan, A. Patelli, Appl. Surf. Sci. 440, 458 (2018). https://doi.org/10.1016/j.apsusc.2018.01.135

    Article  ADS  Google Scholar 

  19. T. Tokunaga, M. Ohno, J. Alloy Compds. 805, 436 (2019). https://doi.org/10.1016/j.jallcom.2019.07.039

    Article  Google Scholar 

  20. J. George, S. Mannepalli, K.S.R.N. Mangalampalli, Adv. Engg. Mater. 23, 2001494 (2021). https://doi.org/10.1002/adem.202001494

    Article  Google Scholar 

  21. W. Schintlmeister, W. Wallgram, J. Kanz, K. Gigl, Wear 100, 153 (1984). https://doi.org/10.1016/0043-1648(84)90011-5

    Article  Google Scholar 

  22. M. Kot, Ł Major, J. Lackner, Mater. Des. 51, 280 (2013). https://doi.org/10.1016/j.matdes.2013.04.008

    Article  Google Scholar 

  23. V.M. Beresnev, O.V. Bondar, B.O. Postolnyi, M.O. Lisovenko, G. Abadias, P. Chartier, D.A. Kolesnikov, V.N. Borisyuk, B.A. Mukushev, B.R. Zhollybekov, A.A. Andreev, J. Frict. Wear 35, 374 (2014). https://doi.org/10.3103/S1068366614050031

    Article  Google Scholar 

  24. Y.X. Ou, J. Lin, H.L. Che, J.J. Moore, W.D. Sproul, M.K. Lei, Thin Solid Films 594, 147 (2015). https://doi.org/10.1016/j.tsf.2015.09.067

    Article  ADS  Google Scholar 

  25. Y. Xie, C. Xia, H. Du, W. Wang, J. Power Sour. 286, 561 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.025

    Article  ADS  Google Scholar 

  26. Y. Xie, D. Wang, J. Alloy Compds. 665, 323 (2016). https://doi.org/10.1016/j.jallcom.2016.01.089

    Article  Google Scholar 

  27. A.A. Bagdasaryan, A.V. Pshyk, L.E. Coy, M. Kempiński, A.D. Pogrebnjak, V.M. Beresnev, S. Jurga, Mater. Lett. 229, 364 (2018). https://doi.org/10.1016/j.matlet.2018.07.048

    Article  Google Scholar 

  28. A. Azizpour, R. Hahn, F.F. Klimashin, T. Wojcik, E. Poursaeidi, P.H. Mayrhofer, Coatings 9, 363 (2019). https://doi.org/10.3390/coatings9060363

    Article  Google Scholar 

  29. M. Salemizadeh, F.F. Mahani, A. Mokhtari, J. Opt. Soc. Am. B 36, 2863 (2019). https://doi.org/10.1364/JOSAB.36.002863

    Article  ADS  Google Scholar 

  30. V. Bonu, S. Kumar, P.N. Sooraj, H.C. Barshilia, Mater. Des. 198, 109389 (2021). https://doi.org/10.1016/j.matdes.2020.109389

    Article  Google Scholar 

  31. V. Ezhil Selvi, V.K. William Grips, H.C. Barshilia, Surf. Coat. Technol. 224, 42 (2013). https://doi.org/10.1016/j.surfcoat.2013.03.001

    Article  Google Scholar 

  32. A.A. Voevodin, J.S. Zabinski, Thin Solid Films 370, 223 (2000). https://doi.org/10.1016/S0040-6090(00)00917-2

    Article  ADS  Google Scholar 

  33. C. Popov, W. Kulisch, S. Boycheva, K. Yamamoto, G. Ceccone, Y. Koga, Diam. Relat. Mater. 13, 2071 (2004). https://doi.org/10.1016/j.diamond.2004.04.001

    Article  ADS  Google Scholar 

  34. J. Lin, J.J. Moore, B. Mishra, M. Pinkas, W.D. Sproul, Acta Mater. 58, 1554 (2010). https://doi.org/10.1016/j.actamat.2009.10.063

    Article  ADS  Google Scholar 

  35. M. Stueber, H. Holleck, H. Leiste, K. Seemann, S. Ulrich, C. Ziebert, J. Alloy Compds. 483, 321 (2009). https://doi.org/10.1016/j.jallcom.2008.08.133

    Article  Google Scholar 

  36. N. Nedfors, O. Tengstrand, E. Lewin, A. Furlan, P. Eklund, L. Hultman, U. Jansson, Surf. Coat. Technol. 206, 354 (2011). https://doi.org/10.1016/j.surfcoat.2011.07.021

    Article  Google Scholar 

  37. V. Kanyanta, Microstructure property correlations for Hard, Superhard, and Ultrahard Materials (Springer International Publishing, Cham, 2016)

    Book  Google Scholar 

  38. F.C. Li, T. Liu, J.Y. Zhang, S. Shuang, Q. Wang, A.D. Wang, J.G. Wang, Y. Yang, Mater. Today Adv. 4, 100027 (2019). https://doi.org/10.1016/j.mtadv.2019.100027

    Article  Google Scholar 

  39. S. Bag, A. Baksi, D. Wang, R. Kruk, C. Benel, M.R. Chellali, and Horst Hahn. Nanoscale Adv. 1, 4513 (2019). https://doi.org/10.1039/C9NA00533A

    Article  ADS  Google Scholar 

  40. L. Shizhi, S. Yulong, P. Hongrui, Plasma Chem. Plasma Process. 12, 287 (1992). https://doi.org/10.1007/BF01447027

    Article  Google Scholar 

  41. S. Vepřek, S. Reiprich, L. Shizhi, Appl. Phys. Lett. 66, 2640 (1995). https://doi.org/10.1063/1.113110

    Article  ADS  Google Scholar 

  42. H.-D. Männling, D.S. Patil, K. Moto, M. Jilek, S. Veprek, Surf. Coat. Technol. 146–147, 263 (2001). https://doi.org/10.1016/S0257-8972(01)01474-8

    Article  Google Scholar 

  43. M. Antonov, I. Hussainova, F. Sergejev, P. Kulu, A. Gregor, Wear 267, 898 (2009). https://doi.org/10.1016/j.wear.2008.12.045

    Article  Google Scholar 

  44. S. Veprek, M.G.J. Veprek-Heijman, R. Zhang, J. Phys. Chem. Solids 68, 1161 (2007). https://doi.org/10.1016/j.jcps.2007.01.013

    Article  ADS  Google Scholar 

  45. S. Ma, J. Procházka, P. Karvánková, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu, S. Vepřek, Surf. Coat. Technol. 194, 143 (2005). https://doi.org/10.1016/j.surfcoat.2004.05.007

    Article  Google Scholar 

  46. Y.H. Lu, J.P. Wang, S.L. Tao, Z.F. Zhou, Appl. Surf. Sci. 257, 6380 (2011). https://doi.org/10.1016/j.apsusc.2011.01.128

    Article  ADS  Google Scholar 

  47. S. Vepřek, S.G. Prilliman, S.M. Clark, J. Phys. Chem. Solids 71, 1175 (2010). https://doi.org/10.1016/j.jpcs.2010.03.029

    Article  ADS  Google Scholar 

  48. J. Patscheider, N. Hellgren, R.T. Haasch, I. Petrov, J.E. Greene, Phys. Rev. B 83, 125124 (2011). https://doi.org/10.1103/PhysRevB.83.125124

    Article  ADS  Google Scholar 

  49. V.I. Ivashchenko, S. Veprek, A.S. Argon, P.E.A. Turchi, L. Gorb, F. Hill, J. Leszczynski, Thin Solid Films 578, 83 (2015). https://doi.org/10.1016/j.tsf.2015.02.013

    Article  ADS  Google Scholar 

  50. Q.F. Fang, Q. Liu, S.Z. Li, Z.S. Li, P. Karvankova, M. Jilek, S. Veprek, Mater. Sci. Eng. A. 442, 328 (2006). https://doi.org/10.1016/j.msea.2006.01.150

    Article  Google Scholar 

  51. D. Franchi, M. Rostagno, Metall. Ital. 97, 21 (2005)

    Google Scholar 

  52. A. Kumar, Mater. Manuf. Proces. 14, 397 (1999). https://doi.org/10.1080/10426919908914835

    Article  Google Scholar 

  53. S. Veprek, Rev. Adv. Mater. Science 5, 6 (2003)

    Google Scholar 

  54. S. Hao, B. Delley, S. Veprek, C. Stampfl, Phys. Rev. Lett. 97, 086102 (2006). https://doi.org/10.1103/PhysRevLett.97.086102

    Article  ADS  Google Scholar 

  55. V. Chawla, R. Jayaganthan, R. Chandra, J. Mater. Sci. Technol. 26, 673 (2010). https://doi.org/10.1016/S1005-0302(10)60105-3

    Article  Google Scholar 

  56. S. Veprek, M.G.J. Veprek-Heijman, P. Karvankova, J. Prochazka, Thin Solid Films 476, 1 (2005). https://doi.org/10.1016/j.tsf.2004.10.053

    Article  ADS  Google Scholar 

  57. H.C. Barshilia, B. Deepthi, A.S. Arun Prabhu, K.S. Rajam, Surf. Coat. Technol. 201, 329 (2006). https://doi.org/10.1016/j.surfcoat.2005.11.124

    Article  Google Scholar 

  58. J. Ding, S. Xue, Z. Shang, J. Li, Y. Zhang, R. Su, T. Niu, H. Wang, X. Zhang, Mater. Sci. Eng. A. 804, 140718 (2021). https://doi.org/10.1016/j.msea.2020.140718

    Article  Google Scholar 

  59. V. Shankernath, K.L. Naidu, M.G. Krishna, K.A. Padmanabhan, A.I.P. Conf, Proc. 1942, 080071 (2018). https://doi.org/10.1063/1.5028905

    Article  Google Scholar 

  60. M.S.R.N. Kiran, M. Ghanashyam Krishna, K.A. Padmanabhan, Solid State Commun. 151, 561 (2011). https://doi.org/10.1016/j.ssc.2011.01.009

    Article  ADS  Google Scholar 

  61. K. Vasu, M. Ghanashyam Krishna, K.A. Padmanabhan, Appl. Surf. Sci. 257, 3069 (2011). https://doi.org/10.1016/j.apsusc.2010.10.118

    Article  ADS  Google Scholar 

  62. V. Shankernath, K.L. Naidu, M.G. Krishna, K.A. Padmanabhan, Mater. Res. Bull. 85, 121 (2017). https://doi.org/10.1016/j.materresbull.2016.09.006

    Article  Google Scholar 

  63. C.V. Thompson, Annu. Rev. Mater. Sci. 20, 245 (1990). https://doi.org/10.1146/annurev.ms.20.080190.001333

    Article  ADS  Google Scholar 

  64. M.A. Signore, A. Sytchkova, D. Dimaio, A. Cappello, A. Rizzo, Opt. Mater. 34, 632 (2012). https://doi.org/10.1016/j.optmat.2011.09.012

    Article  ADS  Google Scholar 

  65. J.A. Thornton, Model. Opt Thin Films 0821, 95 (1988). https://doi.org/10.1117/12.941846

    Article  Google Scholar 

  66. L. Neudert, Transmission Electron Microscopy and X-Ray Diffraction - Joint Characterization of Nitride networks and Thermoelectric Tellurides, Doctoral dissertation, LMU Munchen (2017).

  67. R. Saha, W.D. Nix, Acta Mater. 50, 23 (2002). https://doi.org/10.1016/S1359-6454(01)00328-7

    Article  ADS  Google Scholar 

  68. Z. Chen, X. Wang, V. Bhakhri, F. Giuliani, A. Atkinson, Acta Mater. 61, 5720 (2013). https://doi.org/10.1016/j.actamat.2013.06.016

    Article  ADS  Google Scholar 

  69. H. Bakhti, A. Laghrissi, A. Roth, L. Azrar, M. Es-Souni, Appl. Nanosci. 10, 2139 (2020). https://doi.org/10.1007/s13204-020-01338-6

    Article  ADS  Google Scholar 

  70. Y.-G. Jung, B. Lawn, M. Martyniuk, H. Huang, X.Z. Hu, J. Mater. Res. 19, 3076 (2004). https://doi.org/10.1557/JMR.2004.0380

    Article  ADS  Google Scholar 

  71. B.-K. Jang, H. Matsubara, Mater. Lett. 59, 3462 (2005). https://doi.org/10.1016/j.matlet.2005.06.014

    Article  Google Scholar 

Download references

Acknowledgments

The first two authors thank DRDO, India, for the provision of facilities and fellowships. Some facilities are also provided by the Centre for Nanotechnology and Schools of Physics and Chemistry, University of Hyderabad.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. Shankernath or K. Lakshun Naidu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shankernath, V., Naidu, K.L., Krishna, M.G. et al. Growth and properties of nanocrystalline TiN—amorphous Si3N4 composite thin films deposited on IN718 and phynox alloy substrates. Appl. Phys. A 128, 79 (2022). https://doi.org/10.1007/s00339-021-05186-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05186-1

Keywords

Navigation