Skip to main content
Log in

High-speed SOI junctionless transistor based on hybrid heterostructure of Si/Si0.5Ge0.5 and asymmetric spacers with outstanding analog/RF parameters

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In junctionless (JL) transistors, impurity scattering limits the carrier velocity within a channel, disturbing its performance in analog/RF applications. For the first time, the Si/Si0.5Ge0.5 heterostructures and asymmetric spacers are used in this paper to improve the figures of merit of analog/RF performance of a silicon-on-insulator JL transistor (SOI-JLT). The proposed device is called hybrid heterostructure-SOI-JLT (HH-SOI-JLT), in which regions with HfO2 are referred to as the high-κ spacer, whereas regions with SiO2 are known as the low-κ spacer. According to the simulation results, Si/Si0.5Ge0.5 heterostructure in the channel of the HH-SOI-JLT device caused an offset in the conduction band energy and created quantum well in the interfacial of drain/channel and enhanced electron velocity and density of electrons significantly. Moreover, using the high-κ spacer intensified the fringing fields in the region above the threshold, and using the low-κ spacer decreased the gate-to-drain capacitance. With a 20-nm channel, maximum transconductance (Gmmax), unity gain cut-off frequency (\(f_{T}\)), and intrinsic gain (AV) of the HH-SOI-JLT device are optimized by 265%, 83%, and 90%, respectively, compared to the same dimensional SOI-JLT device. In fact, the proposed HH-SOI-JLT device can be an appropriate candidate for analog/RF applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Muralidhar, I. Lauer, J. Cai, D.J. Frank, P. Oldige, Toward ultimate scaling of MOSFET. IEEE Trans. Electron Devices 6(1), 524–526 (2016)

    Article  ADS  Google Scholar 

  2. S. Bangsaruntip, G.M. Cohen, A. Majumdar, J.W. Sleight, Universality of short-channel effects in undoped-body silicon nanowire MOSFETs. IEEE Electron Dev. Lett. 31(9), 903–905 (2010)

    Article  ADS  Google Scholar 

  3. R. Kumar, A. Kumar, Hafnium based high-k dielectric gate-stacked (GS) gate material engineered (GME) junctionless nanotube MOSFET for digital applications. Appl. Phys. A 127(1), 1–10 (2021)

    Article  Google Scholar 

  4. N. Gupta, A. Kumar, Numerical assessment of high-k spacer on symmetric S/D underlap GAA junctionless accumulation mode silicon nanowire MOSFET for RFIC design. Appl. Phys. A 127(1), 76 (2021)

    Article  ADS  Google Scholar 

  5. D.K. Singh, P. Mondal, M.W. Akram, Investigation of statistical variability in non-uniformly doped bulk junctionless FinFET. Mater. Sci. Semicond. Process. 113, 105041 (2020)

    Article  Google Scholar 

  6. A. Baidya, S. Baishya, T.R. Lenka, Impact of thin high-k dielectrics and gate metals on RF characteristics of 3D double gate junctionless transistor. Mater. Sci. Semicond. Process. 71, 413–420 (2017)

    Article  Google Scholar 

  7. J.-P. Colinge, C.-W. Lee, A. Afzalian, N. Dehdashti Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, R. Murphy, Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)

    Article  ADS  Google Scholar 

  8. F. Jazaeri. Modeling junctionless metal-oxide-semiconductor field-effect transistor. Ph.D. dissertation, École Polytechnique Fédérale de Lausanne (EPFL) (2015)

  9. M. Rahimian, M. Fathipour, Improvement of electrical performance in junctionless nanowire TFET using hetero-gate-dielectric. Mater. Sci. Semicond. Process. 63, 142–152 (2017)

    Article  Google Scholar 

  10. M. Fallahnejad, M. Vadizadeh, A. Salehi, A. Kashaniniya, F. Razaghian, Impact of channel doping engineering on the high-frequency noise performance of junctionless In0.3Ga0.7As/GaAs FET: a numerical simulation study. Phys. E Low-dimens. Syst. Nanostruct. 115, 113715 (2020)

    Article  Google Scholar 

  11. M. Fallahnejad, M. Vadizadeh, A. Salehi, Performance enhancement of field effect transistor without doping junctions using In0.3Ga0.7As/GaAs for analog/RF applications. Mod. Phys. B 33, 1950050 (2019)

    Article  Google Scholar 

  12. R.K. Baruah, R.P. Paily, A dual-material gate junctionless transistor with high-k spacer for enhanced analog performance. IEEE Trans. Electron Devices 61(1), 123–128 (2013)

    Article  ADS  Google Scholar 

  13. D. Roy, A. Biswas, Sidewall spacer layer engineering for improvement of analog/RF performance of nanoscale double-gate junctionless transistors. Microsyst. Technol. 23(7), 2847–2857 (2017)

    Article  Google Scholar 

  14. D. Ghosh, A. Kranti, Impact of channel doping and spacer architecture on analog/RF performance of low power junctionless MOSFETs. Semicond. Sci. Technol. 30(1), 015002 (2015)

    Article  ADS  Google Scholar 

  15. M.K. Anvarifard, Z. Ramezani, I. Sadegh Amiri, A. Mahdavi Nejad, A nanoscale-modified band energy junctionless transistor with considerable progress on the electrical and frequency issue. Mater. Sci. Semicond. Process. 107, 104849 (2020)

    Article  Google Scholar 

  16. A. Garg, B. Singh, Y. Singh, Dual-gate junctionless FET on SOI for high frequency analog applications. Silicon 13, 2835–2843 (2020)

    Article  Google Scholar 

  17. S.W. Kim, J.H. Kim, T.-J. King Liu, Y. Choi, B.-G. Park, Demonstration of L-Shaped tunnel field-effect transistors. IEEE Trans. Electron. Devices 63(4), 1774–1778 (2015)

    Article  ADS  Google Scholar 

  18. Y. Singh, M. Badiyari, Performance optimization of InGaAs power LDMOSFET. Microelectron. J. 46(5), 404–409 (2015)

    Article  Google Scholar 

  19. M.S. AdhikarI, R. Patel, Y. Singh, High performance dual-gate SiGe MOSFET for radio-frequency applications. AEU Int. J. Electron. Commun. 110, 152838 (2019)

    Article  Google Scholar 

  20. M.S. Adhikari, Y. Singh, High performance multi-finger MOSFET on SOI for RF amplifiers. Indian J. Phys. 91(10), 1211–1217 (2017)

    Article  ADS  Google Scholar 

  21. M. Li, J. Wang, B. Zhang, Q. Tao, H. Wang, Q. Cao, C. Huang, J. Mo, W. Shujun Cai, Improved fabrication of fully-recessed normally-off SiN/SiO2/GaN MISFET based on the self-terminated gate recess etching technique. Solid-State Electron. 177, 107927 (2021)

    Article  Google Scholar 

  22. Y. He, Q. He, M. Mi, C. Wang, Y. Hao, M. Zhang, L. Yang, X. Ma, Fully recessed-gate normally-off AlGaN/GaN high electron mobility transistors with high breakdown electric field. In 2018 1st Workshop on Wide Bandgap Power Devices and Applications in Asia (WiPDA Asia), IEEE pp. 203–207 (2018)

  23. T.-W. Tang, S. Ramaswamy, J. Nam, An improved hydrodynamic transport model for silicon. IEEE Trans. Electron Devices 40(8), 1469–1477 (1993)

    Article  ADS  Google Scholar 

  24. M. Gritsch, H. Kosina, T. Grasser, S. Selberherr, Revision of the standard hydrodynamic transport model for SOI simulation. IEEE Trans. Electron Devices 49(10), 1814–1820 (2002)

    Article  ADS  Google Scholar 

  25. M. Lundstrom, Elementary scattering theory of the Si MOSFET. IEEE Electron Device Lett. 18(7), 361–363 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  26. G. Curatola, G. Fiori, G. Iannaccone, Modelling and simulation challenges for nanoscale MOSFETs in the ballistic limit. Solid-State Electron. 48(4), 581–587 (2004)

    Article  ADS  Google Scholar 

  27. H.S. Bennett, C.L. Wilson, Statistical comparisons of data on band-gap narrowing in heavily doped silicon: electrical and optical measurements. J. Appl. Phys. 55(10), 3582–3587 (1984)

    Article  ADS  Google Scholar 

  28. C. Lombardi, S. Manzini, A. Saporito, M. Vanzi, A physically based mobility model for numerical simulation of nonplanar devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 7(11), 1164–1171 (1988)

    Article  Google Scholar 

  29. B. Ghosh, P. Mondal, M.W. Akram, P. Bal, A.K. Salimath, Hetero-gate-dielectric double gate junctionless transistor (HGJLT) with reduced band-to-band tunnelling effects in subthreshold regime. J. Semicond. 35(6), 064001 (2014)

    Article  ADS  Google Scholar 

  30. S. Takagi et al., Carrier-transport-enhanced channel CMOS for improved power consumption and performance. IEEE Trans. Electron Devices 55(1), 21–39 (2007)

    Article  ADS  Google Scholar 

  31. A. Kranti, R. Yan, C.-W. Lee, I. Ferain, R. Yu, N. Dehdashti Akhavan, P. Razavi, J.-P. Colinge, Junctionless nanowire transistor (JNT): properties and design guidelines. Solid-State Electron. 65, 33–37 (2011)

    ADS  Google Scholar 

  32. M. Vadizadeh, Designing a hetrostructure junctionless-field effect transistor (HJL-FET) for high-speed applications. J. Korean Phys. Soc. 71(5), 275–282 (2017)

    Article  ADS  Google Scholar 

  33. M. Vadizadeh, Improving gate delay and I ON/I OFF in nanoscale heterostructure field effect diode (H-FED) by using heavy doped layers in the channel. Appl. Phys. A 122(4), 469 (2016)

    Article  Google Scholar 

  34. S. Takagi, J.L. Hoyt, J.J. Welser, F.J. Gibbons, Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal–oxide–semiconductor field-effect transistors. J. Appl. Phys. 80(3), 1567–1577 (1996)

    Article  ADS  Google Scholar 

  35. H. Pardeshi, Analog/RF performance of AlInN/GaN underlap DG MOS-HEMT. Superlattices Microstruct. 88, 508–517 (2015)

    Article  ADS  Google Scholar 

  36. B. Razavi, Design of Analog CMOS Integrated Circuits, vol. 67 (McGraw Hill Education, 2017)

    Google Scholar 

  37. ATLAS, User's Manual (2013). http://www.silvaco.com

  38. C.H. Price, Two Dimensional Numerical Simulation of Semiconductor Devices, Ph.D. Dissertation, Stanford University (1982)

  39. S. Mason, Power gain in feedback amplifier. Trans. IRE Prof. Group Circuit Theory 1(2), 20–25 (1954)

    Article  Google Scholar 

  40. M. Vadizadeh, M. Fallahnejad, Impact of effective mass changes with mole-fraction on the analog/radio frequency benchmarking parameters in junctionless GaxIn1–xAs/GaAs field-effect transistor. Int. J. Mod. Phys. B 35(23), 2150238 (2021)

    Article  ADS  Google Scholar 

  41. A. Garg, B. Singh, Y. Singh, A new trench double gate junctionless FET: a device for switching and analog/RF applications. AEU Int. J. Electron. Commun. 118, 153140 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Amini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallahnejad, M., Amini, A., Khodabakhsh, A. et al. High-speed SOI junctionless transistor based on hybrid heterostructure of Si/Si0.5Ge0.5 and asymmetric spacers with outstanding analog/RF parameters. Appl. Phys. A 128, 47 (2022). https://doi.org/10.1007/s00339-021-05153-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05153-w

Keywords

Navigation