Skip to main content
Log in

Synthesis, growth, structural, physicochemical, linear and nonlinear optical properties of new hybrid [(Ba(C10H20O5)2)· (Mn (SCN)4)] single crystal

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A novel nonlinear optical single crystal of barium (II) 15-crown-5-ether manganese (II)-tetra-thiocyanate (Ba(C10H20O5)2)· (Mn(SCN)4); (BBCMTC) has been grown in a period of 15–20 days by slow evaporation solvent technique with the dimension of 10 × 5 × 2 mm3.Single crystal X-ray diffraction shows BBCMTC crystallizes in orthorhombic crystal system with space group Pnma. In Powder X-Ray diffraction, the hkl plane orientations reveal the phase identification of the grown crystal. The estimated lattice parameters (a = 15.9102 Å, b = 12.6164 Å, c = 18.3959 Å, α = β = γ = 90° and V = 3696.26 Å3) are well-matched in both powder and single crystal XRD. Spectroscopic analysis of FTIR and micro-Raman confirmed the existence of C–N stretching of SCN, C–C stretching of ring, metal–nitrogen bonding and Ba–O groups. BBCMTC possess lower cut-off wavelength of 287 nm and wide optical band gap of 4.1 eV. FE-SEM and optical microscopic studies revealed the presence of voids on the surface of grown crystal and reverse growth rate facets. TG–DTA and DSC measurements revealed that the crystalline compound has better thermal stability (382 °C) than other inorganic–organic crystalline compounds such as CLTC (171 °C) and ACCTC (247 °C). Vickers’s hardness test shows the material belongs to soft materials category (n = 3). Variation of dielectric constant and dielectric loss with frequency and temperature was analyzed. Furthermore, dielectric solid-state parameters such as valence electron plasma energy (ħ \(\omega_{P}\)), Penn gap (EP), Fermi energy (EF), and electronic polarizability (α) were calculated. The third-order nonlinear optical coefficients such as nonlinear refractive index (n2 = 7.86 × 10− 8 cm2W− 1), nonlinear absorption coefficient (β = 4.50 × 10− 3 cmW− 1) and nonlinear optical susceptibility (χ3 = 11.55 × 10− 5 esu) obtained from Z-scan studies under 785 nm excitation. Therefore, BBCMTC single crystal with higher thermal stability and third-order NLO coefficient finds potential applications in optoelectronics and optical switching device fabrications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Sakthi, R. Rajasekaran, D. Balasubramanian, J. Adv. Phys. 5, 199–206 (2016)

    Google Scholar 

  2. K.S. Kumat, A. Baskaran, V. Ramesh, S. Murugavel, P. Sagayaraj, K. Rajarajan, Opt-Int. J. Light Electron Opt. (2016)

  3. G. Pabitha, R. Dhanasekaran, Mater Sci. Eng. B 177, 1149–1155 (2012)

    Google Scholar 

  4. T.A. Hegde, A. Dutta, V. Gandhiraj, Int J Eng Technol. Innov. 9(4), 257 (2019)

    Google Scholar 

  5. X.Q. Wang, D. Xu, M.K. Lu, D.R. Yuan, S.X. Xu, Mater. Res. Bull. 36(5–6), 879–887 (2001). https://doi.org/10.1016/S0025-5408(01)00573-6

    Article  Google Scholar 

  6. X.Q. Wang, D. Xu, M.K. Lu, D.R. Yuan, S.X. Xu, S.Y. Guo, G.H. Zhang, J.R. Liu, J. Cryst. Growth 224(3–4), 284–93 (2001)

    ADS  Google Scholar 

  7. D. Yuan, D. Xu, M. Liu, F. Qi, W. Yu, W. Hou, Y. Bing, S. Sun, M. Jiang, Appl. Phys. Lett. 70(5), 544–546 (1997)

    ADS  Google Scholar 

  8. R.J. Usha, P. Sagayaraj, V. Joseph, Spectrochim. Acta part A Mol. Biomol. Spectrosc. 133, 241–249 (2014). https://doi.org/10.1016/j.saa.2014.04.161

    Article  ADS  Google Scholar 

  9. P.N. Kumari, S. Kalainathan, N.A. Raj, Mater. Res. Bull. 42(12), 2099–2106 (2007)

    Google Scholar 

  10. V. Ramesh, A.S. Syed, K. Jagannathan, K. Rajarajan, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 108, 236–243 (2013)

    ADS  Google Scholar 

  11. S. Cynthia, S. Sagadevan, L. Mariappan, J. Mater. Sci.: Mater. Electron 28, 14787–14797 (2017)

    Google Scholar 

  12. R.D. Shannon, Acta Cryst. A32, 751–767 (1976)

    Google Scholar 

  13. K. Rajarajan, K.S. Kumar, J. Therm. Anal. Calorim 112, 1297–1302 (2013)

    Google Scholar 

  14. R. Vukovic, A. Erceg, V. Pillizota, D. Ubaric, Acta Aliment. 28(2), 141–147 (1999)

    Google Scholar 

  15. A.M. Arif, A. Yousaf, H.-L. Xu, Z.-M. Su, J. Mol. Liq. 301, 112492 (2020)

    Google Scholar 

  16. S-L Li, J-Y Wu, Y-P Tian, H Ming, P Wang, M-H Jiang, H-K Fun, https://doi.org/10.1002/ejic.200500906

  17. Bruker APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA (2008)

  18. G.M. Sheldrick, SADABS Program for Area Detector Absorption Correction (University of Gottingen, Germany, 1996)

    Google Scholar 

  19. A short history of SHELX, G. M. Sheldrick, Acta Cryst. A64, 112–122 (2008)

  20. X.Q. Wang et al., J. Cryst. Growth 224, 284–293 (2001)

    ADS  Google Scholar 

  21. X.Q. Wang et al., Phys. Stat. Sol. (a) 191, 106–116 (2002)

    ADS  Google Scholar 

  22. X.Q. Wanget, Phys. B: Condens. Matter 405, 1071–1080 (2010)

    ADS  Google Scholar 

  23. C.M. Raghavan, A. Bhaskaran, R. Sankar, R. Jayavel, Curr. Appl. Phys. 10, 479–483 (2010)

    ADS  Google Scholar 

  24. G.M. Sheldrick, Acta Cryst. C71, 3–8 (2015)

    Google Scholar 

  25. C. Zhiqiang, L. Kai, N. Meiju, W. Daqi, Acta Cryst. E66, m68 (2010)

    Google Scholar 

  26. V. Ramesh, K. Rajarajan, B. Gunasekaran, IUCrData 4, x190888 (2019)

    Google Scholar 

  27. V. Ravisankar, V. Ramesh, M. Krishnamohan, B. Gunasekarana, T.C.S. Girisun, IUCrData 6, x210024 (2021)

    Google Scholar 

  28. M. Packiyaraja, S.M. RaviKumar, R. Srineevasan, R. Ravisankar, Mater. Sci. Eng. 360(1), 012031 (2018). https://doi.org/10.1088/1757899X/360/1/01203

    Article  Google Scholar 

  29. R. Sankar, C.M. Ragavan, M. Balaji, R. Mohankumar, R. Jayavel, Cryst. Growth Des. Mater. Sci. Eng. 3600120317, 348 (2007)

    Google Scholar 

  30. X.Q. Wangetal, Mater. Res. Bull. 36, 1287–1299 (2001)

    Google Scholar 

  31. K. Rajarajan et al., Mater. Manuf. Processes 22, 370–374 (2007)

    Google Scholar 

  32. P.N.S. Kumari, S. Kalainathan, N.A.N. Raj, Mater. Res. Bull. 42, 2099–2106 (2007)

    Google Scholar 

  33. V. Ramesh, B. Gunasekaran, M. Krishnamohan, K. Rajarajan, Mater. Res. Expr. 6, 116205 (2019)

    ADS  Google Scholar 

  34. R. Robert, C.J. Raj, S. Krishnan, S.J. Das, Phys. B 405, 20–24 (2010)

    ADS  Google Scholar 

  35. H. Yang, L. Jun, B. Han, S. Zhenjia, W. Ming, Z. Zhongxiang, J. Adv. Ceram. 9(5), 641–646 (2020). https://doi.org/10.1007/s40145-020-0398-1

    Article  Google Scholar 

  36. H.B. Han, L. Jun, H. Yang, Z. Zhongxiang, J. Adv. Ceram. 9(4), 511–516 (2020). https://doi.org/10.1007/s40145-020-0384-7

    Article  Google Scholar 

  37. B. Han, L. Jun, H. Yang, X. Tongtong, Z. Zhongxiang, Appl. Phys. Lett. 117(4), 042904 (2020). https://doi.org/10.1063/5.0016342

    Article  Google Scholar 

  38. J. Li, Xu. Tongtong, L. Liu, Y. Hong, Z. Song, H. Bai, Z. Zhou, Ceram. Int. 47, 19247–19253 (2021)

    Google Scholar 

  39. A.H. Tejaswi, D. Atanu, G. Vinitha, Int. J. Eng. Tech. Innov. 9(4), 257–286 (2019)

    Google Scholar 

  40. P. Paramasivam, C.R. Raja, Spe Chim. Acta Part A79, 1109–111 (2011)

    ADS  Google Scholar 

  41. S. Gunasekaran, S. Ponnusamy, Cryst. Res. Technol. 41, 130 (2006)

    Google Scholar 

  42. C. Topacli, A. Topacli, J. Mol. Struct. 644, 145 (2003)

    ADS  Google Scholar 

  43. C.M. Raghavan, R. Sankar, R. Mohankumar, R. Jayavel, J. Cryst. Growth 311, 1346–1351 (2009)

    ADS  Google Scholar 

  44. C. Muthuselvi, B. Sumathi, B. Ravikumar, Pharm. Chem. J. 5(5), 35–45 (2018)

    Google Scholar 

  45. J. Arumugam, M. Selvapandiyan, C. Senthilkumar, M. Srinivasan, P. Ramasamy, J. Mater. Sci: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03161-9

    Article  Google Scholar 

  46. S. RafiAhamed, J. Balaji, P. Srinivasan, Mater. Res. Innov. (2017). https://doi.org/10.1080/14328917.2017.1320837

    Article  Google Scholar 

  47. V. Ravisankar, V. Ramesh, B. Gunasekaran, M. Krishnamohan, T.C.S. Girisun, A. Dhanusha, ECS J. Solid State Sci. Tech. 10, 091008 (2021). https://doi.org/10.1149/2162-8777/ac2325

    Article  Google Scholar 

  48. V. Ramesh, B. Gunasekaran, P. Suresh, E. Sundaravadivel, K. Showrilu, K. Rajarajan, IOP Conf. Ser.: Mater. Sci. Eng. 872, 012175 (2020)

    Google Scholar 

  49. T.A. Hegde, A. Dutta, G. Vinitha, Appl. Phys. A 124, 808 (2018)

    ADS  Google Scholar 

  50. C. Balarew, R. Duhlew, J. Solid State Chem. 551, 1–6 (1984)

    ADS  Google Scholar 

  51. N.M. Ravindra, V.K. Srivastava, J. Infrared Phys. 20, 67–69 (1980)

    ADS  Google Scholar 

  52. X.Q. Wang et al., Opt. Mater. 23, 335–341 (2003)

    ADS  Google Scholar 

  53. C.M. Raghavan, R. Sankar, R.M. Kumar, R. Jayavel, J. Cryst. Growth 310, 4570–4575 (2008)

    ADS  Google Scholar 

  54. R. Hanumantharao, S.K. Hindawi, Corp. J. Chem. (2013). https://doi.org/10.1122/2013/305932

    Article  Google Scholar 

  55. K. Sangwal, Mater. Chem. Phys. 63, 145–152 (2000)

    Google Scholar 

  56. R. Vivekanandhan, K. Raju, S.S.J. Dhas, V. Chithambaram, Int. J. App. Eng. Res. 13(18), 13454–13459 (2018)

    Google Scholar 

  57. N. Saravanan, V. Chithambaram, V. Ravisankar, J. Mater. Sci: Mater. Electron. 29, 5009–5013 (2018)

    Google Scholar 

  58. E.M. Onitsch, Systematic metallographic and mineralogic structures. Mikroscopia 2, 131–151 (1947)

    Google Scholar 

  59. M. Meena, C.K. Mahadevan, Cryst. Res. Technol. 43166 (2008)

  60. R.C. Miller, Appl. Phys. Lett. 5, 17 (1964)

    ADS  Google Scholar 

  61. P. Rekha, G. Chakkaravarthi, R.M. Kumar, G. Vinitha, R. Kanagadurai, J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01279-z

    Article  Google Scholar 

  62. J.D.Jackson, ClassicalElectrodynamics, WileyEastern.321 (1978).

  63. D.R. Penn, Phys. Rev. 128, 2093–2097 (1962)

    ADS  Google Scholar 

  64. C. Sundararaja, S. Sagadevan, Mater. Res. 21(1), e20160595 (2018)

    Google Scholar 

  65. P.V. Rysselberghe, J. Phys. Chem. 36, 1152–1155 (1932)

    Google Scholar 

  66. M.J. Renne, B.R.A. Nijboer, Chem. Phys. Lett. 1, 317 (1967)

    ADS  Google Scholar 

  67. B.R.A. Nijboer, M.J. Renne, Chem. Phys. Lett. 2, 35 (1968)

    ADS  Google Scholar 

  68. B.W. Kwaadgras, M. Verdult, M. Dijkstra, R. van Roij, J. Chem. Phys 135, 134105 (2011)

    ADS  Google Scholar 

  69. R. Anbarasan, M.A. Lakshmi, J.K. Sundar, J. Mater. Sci.: Mater. Electron. 29, 14827–14834 (2018)

    Google Scholar 

  70. R. Dhanjayan, S. Gunasekaran, S. Srinivasan, Mater. Lett. 206, 221–224 (2017). https://doi.org/10.1016/j.matlet.2017.07.028

    Article  Google Scholar 

  71. S.N. Jayanthi, N. Bhuvaneswari, Mater. Today: Proc. 5, 3361–3368 (2018)

    Google Scholar 

  72. M. Sheik-Bahae, A.J. Said, Quantum. Electron 26, 760–769 (1990)

    ADS  Google Scholar 

  73. N.Y. Kamber, G. Zhang, S. Liu, S.M. Mikha, W. Haidong, Opt. Commun 184, 475–483 (2000)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful thanks to SRM Institute of science and technology (Deemed University), Kattankulathur, Chengalpattu Dist, Tamilnadu, India provided major instrumentation speciality SRM-NRC, and micro-Raman SRM-SCIF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Gunasekaran.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravisankar, V., Ramesh, V., Girisun, T.C.S. et al. Synthesis, growth, structural, physicochemical, linear and nonlinear optical properties of new hybrid [(Ba(C10H20O5)2)· (Mn (SCN)4)] single crystal. Appl. Phys. A 127, 885 (2021). https://doi.org/10.1007/s00339-021-05046-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05046-y

Keywords

Navigation