Skip to main content
Log in

Comprehensive understanding on germanium-doping effects on oxygen precipitation in Czochralski silicon wafers with a prior rapid thermal anneal

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of germanium (Ge)-doping with concentrations in the range of 1018–1020 cm−3 on oxygen precipitation (OP) in Czochralski (CZ) silicon wafers subjected to the low (800 °C)–high (1000 °C) two-step anneal following the rapid thermal anneal (RTA) at 1250 °C, which is actually the RTA-based internal gettering (IG) process, have been comprehensively investigated. It is found that whether the Ge-doping enhances or suppresses OP in the CZ silicon wafers with the aforementioned three-step anneal is quite dependent on the Ge-doping concentration and on the nucleation time at 800 °C. On the one hand, the Ge-doping is experimentally and theoretically revealed to facilitate the formation of vacancy-oxygen (VOm, m ≥ 1) complexes in the CZ silicon wafer during the prior RTA at 1250 °C. In this sense, the Ge-doping enhances the nucleation of oxide precipitates thus being beneficial for OP. On the other hand, the considerably high concentration of Ge-doping introduces compressive stress into silicon lattice in a manner due to the slightly larger covalent radius of Ge atom. Such introduced compressive stress not only increases the critical size required for the onset growth of oxide precipitate nuclei at 1000 °C but also suppresses the growth of oxide precipitates in the course of 1000 °C anneal. Thus, the Ge-doping is unfavorable for the growth of oxide precipitates. Based on the advantageous and disadvantageous effects of Ge-doping on the nucleation and growth of oxide precipitates, respectively, which have been definitely revealed in this work, the above finding has been essentially understood. Of practical significance, this work offers technological guideline to improve the IG capability of CZ silicon wafer through adopting appropriate Ge-doping and RTA-based annealing scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Gilles, E.R. Weber, S. Hahn, Phys. Rev. Lett. 64, 196–199 (1990)

    Article  ADS  Google Scholar 

  2. R.J. Falster, G.R. Fisher, G. Ferrero, Appl. Phys. Lett. 59, 809–810 (1991)

    Article  ADS  Google Scholar 

  3. T.Y. Tan, E.E. Gardner, W.K. Tice, Appl. Phys. Lett. 30, 175–176 (1977)

    Article  ADS  Google Scholar 

  4. R. Falster, V.V. Voronkov, F. Quast, Phys. Status Solidi B 222, 219–244 (2000)

    Article  ADS  Google Scholar 

  5. R. Falster, V.V. Voronkov, Mater. Sci. Eng. B, Solid-State Mater. Adv. Technol. 73, 87–94 (2000)

    Article  Google Scholar 

  6. K. Sueoka, E. Kamiyama, J. Vanhellemont, J. Appl. Phys. 114, 153510 (2013)

    Article  ADS  Google Scholar 

  7. K. Schmalz, K. Tittelbach, V.V. Emtsev, Yu.N. Daluda, Phys. Status Solidi A 37, 116 (1989)

    Google Scholar 

  8. K. Schmalz, V.V. Emtsev, Appl. Phys. Lett. 65, 1575–1577 (1994)

    Article  ADS  Google Scholar 

  9. D. Yang, X. Yu, X. Ma, J. Xu, L. Li, D. Que, J. Cryst. Growth 243, 371–374 (2002)

    Article  ADS  Google Scholar 

  10. D. Yang, J. Chen, X. Ma, H. Li, X. Ma, D. Tian, L. Li, D. Que, J. Cryst. Growth 2, 292 (2006)

    Google Scholar 

  11. C.A. Londos, A. Andrianakis, E.N. Sgourou, V.V. Emtsev, H. Ohyama, J. Appl. Phys. 109, 033508 (2011)

    Article  ADS  Google Scholar 

  12. I. Yonenaga, T. Taishi, X. Huang, K. Hoshikawa, J. Appl. Phys. 93, 265–269 (2003)

    Article  ADS  Google Scholar 

  13. Y. Sun, W. Lan, T. Zhao, J. Zhao, D. Wu, X. Ma, D. Yang, J. Appl. Phys. 128, 235105 (2020)

    Article  ADS  Google Scholar 

  14. J. Chen, D. Yang, H. Li, X. Ma, D. Que, J. Appl. Phys. 99, 073509 (2006)

    Article  ADS  Google Scholar 

  15. H. Li, D. Yang, X. Ma, X. Yu, D. Que, J. Appl. Phys. 96, 4161 (2004)

    Article  ADS  Google Scholar 

  16. J. Vanhellemont, J. Chen, J. Lauwaert, H. Vrielinck, W. Xu, D. Yang, J.M. Rafí, H. Ohyama, E. Simoen, J. Cryst. Growth 317, 8–15 (2011)

    Article  ADS  Google Scholar 

  17. W. Xu, J. Chen, X. Ma, D. Yang, L. Gong, D. Tian, Appl. Phys. A 104, 349–355 (2011)

    Article  ADS  Google Scholar 

  18. J. Vanhellemont, M. Suezawa, I. Yonenaga, J. Appl. Phys. 108, 016105 (2010)

    Article  ADS  Google Scholar 

  19. J. Chen, D. Yang, X. Ma, H. Li, D. Que, J. Appl. Phys. 101, 033526 (2007)

    Article  ADS  Google Scholar 

  20. P. Wu, J. Chen, X. Ma, D. Yang, J. Appl. Phys. 107, 073518 (2010)

    Article  ADS  Google Scholar 

  21. K.S.R. Koteswara Rao, V. Kumar, S.K. Premachandran, K.P. Raghunath, J. Appl. Phys. 69, 2714–2716 (1991)

    Article  ADS  Google Scholar 

  22. D.V. Lang, H.G. Grimmeiss, E. Meijer, M. Jaros, Phys. Rev. B, Condensed matter 22, 3917–3934 (1980)

    Article  ADS  Google Scholar 

  23. V.V. Voronkov, R. Falster, Mater. Sci. Eng. B 134, 227–232 (2006)

    Article  Google Scholar 

  24. V. Akhmetov, G. Kissinger, W. von Ammon, Appl. Phys. Lett. 94, 092105 (2009)

    Article  ADS  Google Scholar 

  25. C.A. Londos, A. Andrianakis, E.N. Sgourou, V. Emtsev, H. Ohyama, J. Appl. Phys. 107, 093520 (2010)

    Article  ADS  Google Scholar 

  26. S.T. Lee, D. Nichols, Appl. Phys. Lett. 47, 1001–1003 (1985)

    Article  ADS  Google Scholar 

  27. Z. Zeng, J.D. Murphy, R.J. Falster, X. Ma, D. Yang, P.R. Wilshaw, J. Appl. Phys. 109, 063532 (2011)

    Article  ADS  Google Scholar 

  28. D. Timerkaeva, D. Caliste, P. Pochet, Appl. Phys. Lett. 103, 251909 (2013)

    Article  ADS  Google Scholar 

  29. T. Hallberg, J.L. Lindström, J. Appl. Phys. 72, 5130–5138 (1992)

    Article  ADS  Google Scholar 

  30. A. Sassella, A. Borghesi, P. Geranzani, G. Borionetti, Appl. Phys. Lett. 75, 1131–1133 (1999)

    Article  ADS  Google Scholar 

  31. A. Borghesi, A. Sassella, P. Geranzani, M. Porrini, B. Pivac, Mater. Sci. Semicon. Proc. B, Solid-State Mater. Adv. Technol. 73, 145–148 (2000)

    Article  Google Scholar 

  32. S.M. Hu, J. Appl. Phys. 51, 5945–5948 (1980)

    Article  ADS  Google Scholar 

  33. F.R.N. Nabarro, Proceedings of the royal society of london. Series A Math. Phys. Sci. 175, 519–538 (1940)

    Google Scholar 

  34. S.M. Hu, Appl. Phys. Lett. 48, 115–117 (1986)

    Article  ADS  Google Scholar 

  35. J. Vanhellemont, Appl. Phys. Lett. 68, 3413–3415 (1996)

    Article  ADS  Google Scholar 

  36. P. Dong, J. Zhao, X. Liang, D. Tian, S. Yuan, X. Yu, X. Ma, D. Yang, J. Appl. Phys. 117, 025705 (2015)

    Article  ADS  Google Scholar 

  37. T.Y. Tan, C.Y. Kung, J. Appl. Phys. 59, 917–931 (1986)

    Article  ADS  Google Scholar 

  38. J.L. Liidstriim, B.G. Svensson, Mater. Res. Sot. Symp. Proc. 59, 45 (1986)

    Google Scholar 

  39. T. Hallberg, J.L. Lindstrom, J. Appl. Phys. 72, 5130 (1992)

    Article  ADS  Google Scholar 

  40. I. Murin, J.L. Lindstrom, V.P. Markevich, A. Misiuk, C.A. Londos, J. Phys.: Condens. Matter 17, S2237 (2005)

    ADS  Google Scholar 

  41. U. Gösele, T.Y. Tan, Appl. Phys. A Mater. Sci. Proc. 28, 79–92 (1982)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial supports from Natural Science Foundation of China (Grant Nos. 61674126 and 51532007) and Zhejiang provincial key R&D project (2020C01009). The authors also appreciate the great help from Drs. Maosen Fu and Xiao Ma with Northwestern Polytechnical University Xi’an, China for the TEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyang Ma.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, W., Zhao, T., Wu, D. et al. Comprehensive understanding on germanium-doping effects on oxygen precipitation in Czochralski silicon wafers with a prior rapid thermal anneal. Appl. Phys. A 127, 884 (2021). https://doi.org/10.1007/s00339-021-05023-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05023-5

Keywords

Navigation