Skip to main content
Log in

Investigating impurities and surface properties in germanium co-doped multi-crystalline silicon: a combined computational and experimental investigation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Directional solidification (DS) method was employed in the production of multi-crystalline silicon (mc-Si) ingot. Extensive research has been conducted to assess the impact of introducing germanium as a co-dopant into the mc-Si ingot. Incorporating germanium into the material was found to enhance both wafer strength and minority carrier lifetime while reducing light-induced degradation (LID) and dislocation density within the ingot. Upon subjecting the prepared samples to chemical etching, distinctive pits resembling worm-like structures were observed, as obtained in the scanning electron microscope image. Further analysis was focused on assessing oxygen and carbon concentrations in the top, middle, and bottom wafers of both central and peripheral bricks. Electron probe microanalysis (EPMA) revealed a notably high germanium concentration in the middle wafer. These experimental findings underscore the favourable properties of germanium-co-doped silicon, particularly its reduced impurity content, which is poised to enhance the efficiency of solar cells. Moreover, a high-resolution optical microscope was employed to visualize and code-map all grain boundaries and twin boundaries present within the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data available on request

References

  1. J. Chen, D. Yang, X. Ma, Z. Zeng, D. Tian, L. Li, D. Que, L. Gong, Influence of germanium doping on the mechanical strength of Czochralski silicon wafers. J. Appl. Phys. (2008). https://doi.org/10.1063/1.2943272

    Article  Google Scholar 

  2. P. Wang, X. Yu, Z. Li, D. Yang, Improved fracture strength of multicrystalline silicon by germanium doping. J. Cryst. Growth. 318, 230–233 (2011). https://doi.org/10.1016/j.jcrysgro.2010.11.081

    Article  CAS  Google Scholar 

  3. X. Yu, D. Yang, Growth of crystalline silicon for solar cells, in Handbook photovoltatic silicon. ed. by S.I. Czochralski (Springer, Berlin, 2017), pp.1–45. https://doi.org/10.1007/978-3-662-52735-1_12-1

    Chapter  Google Scholar 

  4. J. Day, S. Senthilarasu, T.K. Mallick, Improving spectral modification for applications in solar cells: a review. Renew. Energy. 132, 186–205 (2019). https://doi.org/10.1016/j.renene.2018.07.101

    Article  Google Scholar 

  5. C.R. Wronski, N. Wyrsch, Silican solar cells, Thin-film (Springer, New York, 2012), pp.9240–9292

    Google Scholar 

  6. X. Zhu, X. Yu, D. Yang, Germanium-doped crystalline silicon: effects of germanium doping on boron-related defects. J. Cryst. Growth. 401, 141–145 (2014). https://doi.org/10.1016/j.jcrysgro.2014.03.017

    Article  CAS  Google Scholar 

  7. J.M. Rafí, J. Vanhellemont, E. Simoen, J. Chen, M. Zabala, F. Campabadal, Impact of silicon substrate germanium doping on diode characteristics and on thermal donor formation. Phys. B Condens. Matter 404, 4723–4726 (2009). https://doi.org/10.1016/j.physb.2009.08.150

    Article  CAS  Google Scholar 

  8. V.V. Kalaev, I.Y. Evstratov, Y.N. Makarov, Gas flow effect on global heat transport and melt convection in Czochralski silicon growth. J. Cryst. Growth. 249, 87–99 (2003). https://doi.org/10.1016/S0022-0248(02)02109-7

    Article  CAS  Google Scholar 

  9. O.V. Smirnova, V.V. Kalaev, Y.N. Makarov, N.V. Abrosimov, H. Riemann, V.N. Kurlov, Three-dimensional unsteady modeling analysis of silicon transport in melt during cz growth of Ge1–xSix bulk crystals. J. Cryst. Growth 303, 141–145 (2007). https://doi.org/10.1016/j.jcrysgro.2006.11.150

    Article  CAS  Google Scholar 

  10. S. Sanmugavel, M. Srinivasan, K. Aravinth, P. Ramasamy, Numerical investigations on hot-zone modified DS furnace for mc-Si growth process. AIP Conf. Proc. (2016). https://doi.org/10.1063/1.4948054

    Article  Google Scholar 

  11. N.S. Ganesan, S. Manickam, A. Karuppanan, R. Perumalsamy, Simulation analysis on impurity distribution in mc-Si grown by directional solidification for solar cell applications. Int. J. Mater. Res. 107, 525–533 (2016). https://doi.org/10.3139/146.111375

    Article  CAS  Google Scholar 

  12. S. Sundaramahalingam, A. Gurusamy, N. Somi Ganesan, K. Venkatachalam, R. Perumalsamy, Simulation and Experimental Approach to investigate the Annealing Effect on mc-Si Ingot grown by directional solidification process for PV application. Silicon. 13, 2569–2580 (2021). https://doi.org/10.1007/s12633-020-00604-0

    Article  CAS  Google Scholar 

  13. W. Chen, Q. Wang, D. Yang, L.D. Li, X.G. Yu, L. Wang, H. Jin, Influence of vertical temperature gradients on wafer quality and cell efficiency of seed-assisted high-performance multi-crystalline silicon. J. Cryst. Growth. 467, 65–70 (2017). https://doi.org/10.1016/j.jcrysgro.2016.10.087

    Article  CAS  Google Scholar 

  14. M. Srinivasan, P. Ramasamy, Numerical study on various types of stress and dislocation generation in multi-crystalline silicon at various growth stages for PV applications. Eng. Comput. 33, 207–218 (2017). https://doi.org/10.1007/s00366-016-0465-y

    Article  Google Scholar 

  15. O.V. Smirnova, V.M. Mamedov, V.V. Kalaev, Numerical modeling of stress and dislocations in Si ingots grown by seed-directional solidification and comparison to experimental data. Cryst. Growth Des. 14, 5532–5536 (2014). https://doi.org/10.1021/cg500736j

    Article  CAS  Google Scholar 

  16. S. Wang, H.S. Fang, C.J. Zhao, Z. Zhang, M.J. Zhang, J.F. Xu, Gas flow optimization during the cooling of multicrystalline silicon ingot. Int. J. Heat. Mass. Transf. 84, 370–375 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.01.035

    Article  CAS  Google Scholar 

  17. X. Liu, Y. Dang, H. Tanaka, Y. Fukuda, K. Kutsukake, T. Kojima, T. Ujihara, N. Usami, Data-Driven optimization and experimental validation for the Lab-Scale Mono-Like Silicon Ingot Growth by directional solidification. ACS Omega. 7, 6665–6673 (2022). https://doi.org/10.1021/acsomega.1c06018

    Article  CAS  Google Scholar 

  18. S. Li, P. Wu, B.T. Zhao, W.X. Gao, Germanium doping and impurities analysis on industrial scale Mc-silicon ingot. Appl. Mech. Mater. 162, 207–213 (2012). https://doi.org/10.4028/www.scientific.net/AMM.164.207

    Article  CAS  Google Scholar 

  19. H.J. Möller, L. Long, M. Werner, D. Yang, Oxygen and carbon precipitation in multicrystalline solar silicon. Phys. Status Solidi 171, 175–189 (1999)

    Article  Google Scholar 

  20. D. Yang, H. Moeller, Effect of heat treatment on carbon in multicrystalline silicon. Sol. Energy Mater. Sol. Cells. 72, 541–549 (2002). https://doi.org/10.1016/S0927-0248(01)00203-3

    Article  CAS  Google Scholar 

  21. C. Cabanel, J.Y. Laval, Localization of the electrical activity of structural defects in polycrystalline silicon. J. Appl. Phys. 67, 1425–1432 (1990). https://doi.org/10.1063/1.345673

    Article  CAS  Google Scholar 

  22. R. Kvande, Ø. Mjøs, B. Ryningen, Growth rate and impurity distribution in multicrystalline silicon for solar cells. Mater. Sci. Eng. A (2005). https://doi.org/10.1016/j.msea.2005.09.035

    Article  Google Scholar 

  23. L. Raabe, O. Pätzold, I. Kupka, J. Ehrig, S. Würzner, M. Stelter, The effect of graphite components and crucible coating on the behaviour of carbon and oxygen in multicrystalline silicon. J. Cryst. Growth. 318, 234–238 (2011). https://doi.org/10.1016/j.jcrysgro.2010.11.142

    Article  CAS  Google Scholar 

  24. W. Hoffmann, PV solar electricity industry: market growth and perspective. Sol. Energy Mater. Sol. Cells. 90, 3285–3311 (2006). https://doi.org/10.1016/j.solmat.2005.09.022

    Article  CAS  Google Scholar 

  25. C. Modanese, M. Di Sabatino, A.-K. Søiland, K. Peter, L. Arnberg, Investigation of bulk and solar cell properties of ingots cast from compensated solar grade silicon. Prog. Photovoltaics Res. Appl. 19, 45–53 (2011). https://doi.org/10.1002/pip.986

    Article  CAS  Google Scholar 

  26. Z. Xi, J. Tang, H. Deng, D. Yang, D. Que, A model for distribution of oxygen in multicrystalline silicon ingot grown by directional solidification. Sol. Energy Mater. Sol. Cells. 91, 1688–1691 (2007). https://doi.org/10.1016/j.solmat.2007.05.024

    Article  CAS  Google Scholar 

  27. H. Matsuo, R. Bairava Ganesh, S. Nakano, L. Liu, K. Arafune, Y. Ohshita, M. Yamaguchi, K. Kakimoto, Analysis of oxygen incorporation in unidirectionally solidified multicrystalline silicon for solar cells. J. Cryst. Growth. 310, 2204–2208 (2008). https://doi.org/10.1016/j.jcrysgro.2007.12.017

    Article  CAS  Google Scholar 

  28. K. Hoshikawa, X. Huang, Oxygen transportation during Czochralski silicon crystal growth. Mater. Sci. Eng. B 72, 73–79 (2000). https://doi.org/10.1016/S0921-5107(99)00494-8

    Article  Google Scholar 

  29. F. Kerkar, A. Kheloufi, N. Dokhan, D. Ouadjaout, S. Belhousse, S. Medjahed, N. Meribai, K. Laib, Oxygen and carbon distribution in 80Kg multicrystalline silicon ingot. Silicon 12, 473–478 (2020). https://doi.org/10.1007/s12633-019-00154-0

    Article  CAS  Google Scholar 

  30. S. Durairaj, V. Kesavan, T. Keerthivasan, M. Avinash Kumar, M. Srinivasan, P. Ramasamy, Investigation of orientation, surface morphology, impurity concentration and reflectivity of the multi-crystalline silicon wafers. Mater. Chem. Phys. 282, 125932 (2022). https://doi.org/10.1016/j.matchemphys.2022.125932

    Article  CAS  Google Scholar 

  31. D. Lu, Q. Jiang, X. Ma, Q. Zhang, X. Fu, L. Fan, Defect-related etch pits on crystals and their utilization. Crystals. 12, 1549 (2022). https://doi.org/10.3390/cryst12111549

    Article  CAS  Google Scholar 

  32. I. Yonenaga, Dislocation–impurity interaction in Si. Mater. Sci. Eng. B , (2005). https://doi.org/10.1016/j.mseb.2005.08.013

    Article  Google Scholar 

  33. S. Schwanke, M. Trempa, C. Reimann, M. Kuczynski, G. Schroll, J. Sans, J. Heitmann, J. Friedrich, Influence of crucible properties and Si3N4-coating composition on the oxygen concentration in multi-crystalline silicon ingots. J. Cryst. Growth (2021). https://doi.org/10.1016/j.jcrysgro.2021.126178

    Article  Google Scholar 

  34. S. Sugunraj, P. Karuppasamy, T. Keerthivasan, G. Aravindan, M. Avinash Kumar, M. Srinivasan, P. Ramasamy, Influence of helium gas flow under the retort bottom to control the impurities in grown mc-Si ingot by DS process for photovoltaic application: numerical simulation. J. Cryst. Growth 609, 127151 (2023). https://doi.org/10.1016/j.jcrysgro.2023.127151

    Article  CAS  Google Scholar 

  35. G. Stokkan, Y. Hu, Ø. Mjøs, M. Juel, Study of evolution of dislocation clusters in high performance multicrystalline silicon. Sol. Energy Mater. Sol. Cells. 130, 679–685 (2014). https://doi.org/10.1016/j.solmat.2014.02.034

    Article  CAS  Google Scholar 

  36. D. Yang, X. Yu, X. Li, P. Wang, L. Wang, Germanium-doped crystal silicon for solar cells,. 2010 10th IEEE Int. Conf. Solid-State Integr. Circuit Technol. (2010). https://doi.org/10.1109/ICSICT.2010.5667855

    Article  Google Scholar 

Download references

Funding

No funding was received to assist with the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

TK: software, conceptualization, formal analysis, investigation, data curation, writing—original draft, writing—review & editing. GA: software, conceptualization, validation, investigation. MS: software, validation, investigation. TK: formal analysis, data curation, software. JKR: formal analysis, data curation. NU: supervision, project administration. NV: resources, formal analysis. RM: software, conceptualization, validation. CB: formal analysis, data curation. MS: formal analysis, data curation. CR: formal analysis, data curation. PR: supervision, project administration.

Corresponding author

Correspondence to M. Srinivasan.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

Not Applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keerthivasan, T., Anbu, G., Srinivasan, M. et al. Investigating impurities and surface properties in germanium co-doped multi-crystalline silicon: a combined computational and experimental investigation. J Mater Sci: Mater Electron 35, 49 (2024). https://doi.org/10.1007/s10854-023-11750-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11750-7

Navigation