Skip to main content

Advertisement

Log in

Partially amorphous NiFe-based bimetallic hydroxide nanocatalyst for efficient oxygen evolution reaction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Exploring high-efficiency earth-abundant electrocatalysts facilitates advances in sustainable energy conversion and storage. Herein, partially amorphous NiFe hydroxide nanoparticles were synthesized via a facile solvothermal method for application as a highly efficient and stable electrocatalyst to produce oxygen by water decomposition. The partially amorphous phase and tunable component ratio of the NiFe-based hydroxide nanoparticles contributed to their excellent electrocatalytic oxygen evolution reaction (OER) activity. Overpotentials of 265 and 296 mV were required to deliver current densities of 10 and 50 mA cm−2, respectively, and the Tafel slope was as low as 58.6 mV dec−1 in 1.0 M KOH. Besides, the OER performance of the nanoparticles was stable for more than 35 h. Ex situ Raman spectroscopic and electrochemical analyses revealed that the defect sites were the electrochemically formed in the metal hydroxide. The proposed approach provides a reliable method for enhancing the performance of other NiFe-based catalysts for water oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C. Wang, W. Li, X. Wang, N. Yu, H. Sun, B. Geng, Open N-doped carbon coated porous molybdenum phosphide nanorods for synergistic catalytic hydrogen evolution reaction. Nano Res. (2021). https://doi.org/10.1007/s12274-021-3759-3

    Article  Google Scholar 

  2. Y. Li, X. Bao, D. Chen, Z. Wang, N. Dewangan, M. Li, Z. Xu, J. Wang, S. Kawi, Q. Zhong, A minireview on nickel-based heterogeneous electrocatalysts for water splitting. ChemCatChem 11(24), 5913–5928 (2019)

    Google Scholar 

  3. X. He, Y.D. Huang, X.T. Sun, P. Du, Z.B. Zhao, R.Y. Wang, H. Yang, Y. Wang, K. Huang, Boosting the electrochemical performance of mesoporous NiCo2O4 oxygen evolution catalysts by facile surface modifying. Appl. Phys. A 126(11), 841 (2020)

    ADS  Google Scholar 

  4. Y.-M. Wang, Y.-Y. Li, T. Huang, W.-Q. Huang, S.-F. Ma, F. Zeng, X. Li, Y.-F. Chai, G.-F. Huang, Co–Cu–P nanosheet-based open architecture for high-performance oxygen evolution reaction. Appl. Phys. A 127(4), 224 (2021)

    ADS  Google Scholar 

  5. X.-Y. Zhang, Y.-R. Zhu, Y. Chen, S.-Y. Dou, X.-Y. Chen, B. Dong, B.-Y. Guo, D.-P. Liu, C.-G. Liu, Y.-M. Chai, Hydrogen evolution under large-current-density based on fluorine-doped cobalt-iron phosphides. Chem. Eng. J. 399, 125831 (2020)

    Google Scholar 

  6. N. Yu, W. Cao, M. Huttula, Y. Kayser, P. Hoenicke, B. Beckhoff, F. Lai, R. Dong, H. Sun, B. Geng, Fabrication of FeNi hydroxides double-shell nanotube arrays with enhanced performance for oxygen evolution reaction. Appl. Catal. B Environ. 261, 118193 (2020)

    Google Scholar 

  7. K. Huang, R. Dong, C. Wang, W. Li, H. Sun, B. Geng, Fe–Ni layered double hydroxide arrays with homogeneous heterostructure as efficient electrocatalysts for overall water splitting. ACS Sustain. Chem. Eng. 7(17), 15073–15079 (2019)

    Google Scholar 

  8. S. Ibraheem, X. Li, S.S.A. Shah, T. Najam, G. Yasin, R. Iqbal, S. Hussain, W. Ding, F. Shahzad, Tellurium triggered formation of Te/Fe–NiOOH nanocubes as an efficient bifunctional electrocatalyst for overall water splitting. ACS Appl. Mater. Interfaces. 13(9), 10972–10978 (2021)

    Google Scholar 

  9. J. Wang, L. Gan, W. Zhang, Y. Peng, H. Yu, Q. Yan, X. Xia, X. Wang, In situ formation of molecular Ni–Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolution. Sci. Adv. 4(3), 7970 (2018)

    ADS  Google Scholar 

  10. Z. Wu, Z. Zou, J. Huang, F. Gao, Fe-doped NiO mesoporous nanosheets array for highly efficient overall water splitting. J. Catal. 358, 243–252 (2018)

    Google Scholar 

  11. H.B. Tao, L. Fang, J. Chen, H.B. Yang, J. Gao, J. Miao, S. Chen, B. Liu, Identification of surface reactivity descriptor for transition metal oxides in oxygen evolution reaction. J. Am. Chem. Soc. 138(31), 9978–9985 (2016)

    Google Scholar 

  12. J.-T. Ren, G.-G. Yuan, C.-C. Weng, L. Chen, Z.-Y. Yuan, Uniquely integrated Fe-doped Ni(OH)2 nanosheets for highly efficient oxygen and hydrogen evolution reactions. Nanoscale 10(22), 10620–10628 (2018)

    Google Scholar 

  13. T. Kou, S. Wang, J.L. Hauser, M. Chen, S.R.J. Oliver, Y. Ye, J. Guo, Y. Li, Ni foam-supported Fe-doped β-Ni(OH)2 nanosheets show ultralow overpotential for oxygen evolution reaction. ACS Energy Lett. 4(3), 622–628 (2019)

    Google Scholar 

  14. A.C. Pebley, E. Decolvenaere, T.M. Pollock, M.J. Gordon, Oxygen evolution on Fe-doped NiO electrocatalysts deposited via microplasma. Nanoscale 9(39), 15070–15082 (2017)

    Google Scholar 

  15. N. Yamada, S. Kitano, Y. Yato, D. Kowalski, Y. Aoki, H. Habazaki, In situ activation of anodized Ni–Fe alloys for the oxygen evolution reaction in alkaline media. ACS Appl. Energy Mater. 3(12), 12316–12326 (2020)

    Google Scholar 

  16. A.-L. Wang, Y.-T. Dong, M. Li, C. Liang, G.-R. Li, In situ derived NixFe1−xOOH/NiFe/NixFe1−xOOH nanotube arrays from NiFe alloys as efficient electrocatalysts for oxygen evolution. ACS Appl. Mater. Interfaces 9(40), 34954–34960 (2017)

    Google Scholar 

  17. M. Li, H. Li, X. Jiang, M. Jiang, X. Zhan, G. Fu, J.-M. Lee, Y. Tang, Gd-induced electronic structure engineering of a NiFe-layered double hydroxide for efficient oxygen evolution. J. Mater. Chem. A 9(5), 2999–3006 (2021)

    Google Scholar 

  18. W. Cai, R. Chen, H. Yang, H.B. Tao, H.-Y. Wang, J. Gao, W. Liu, S. Liu, S.-F. Hung, B. Liu, Amorphous versus crystalline in water oxidation catalysis: a case study of NiFe alloy. Nano Lett. 20(6), 4278–4285 (2020)

    ADS  Google Scholar 

  19. L. Kuai, J. Geng, C. Chen, E. Kan, Y. Liu, Q. Wang, B. Geng, A reliable aerosol-spray-assisted approach to produce and optimize amorphous metal oxide catalysts for electrochemical water splitting. Angew. Chem. Int. Ed. 53(29), 7547–7551 (2014)

    Google Scholar 

  20. X. Cheng, J. Yuan, J. Cao, C. Lei, B. Yang, Z. Li, X. Zhang, C. Yuan, L. Lei, Y. Hou, Strongly coupling of amorphous/crystalline reduced FeOOH/α-Ni(OH)2 heterostructure for extremely efficient water oxidation at ultra-high current density. J. Colloid Interface Sci. 579, 340–346 (2020)

    ADS  Google Scholar 

  21. S. Wang, X. Ge, C. Lv, C. Hu, H. Guan, J. Wu, Z. Wang, X. Yang, Y. Shi, J. Song, Z. Zhang, A. Watanabe, J. Cai, Oxygen vacancy-rich amorphous porous NiFe(OH)x derived from Ni(OH)x/Prussian blue as highly efficient oxygen evolution electrocatalysts. Nanoscale 12(17), 9557–9568 (2020)

    Google Scholar 

  22. Q. Qian, Y. Li, Y. Liu, G. Zhang, General anion-exchange reaction derived amorphous mixed-metal oxides hollow nanoprisms for highly efficient water oxidation electrocatalysis. Appl. Catal. B: Environ. 266, 118642 (2020)

    Google Scholar 

  23. J. Zhang, J. Qian, J. Ran, P. Xi, L. Yang, D. Gao, Engineering lower coordination atoms onto NiO/Co3O4 heterointerfaces for boosting oxygen evolution reactions. ACS Catal. 10(21), 12376–12384 (2020)

    Google Scholar 

  24. X. Sun, W. Si, L. Xi, B. Liu, X. Liu, C. Yan, O.G. Schmidt, In situ-formed, amorphous, oxygen-enabled germanium anode with robust cycle life for reversible lithium storage. ChemElectroChem 2(5), 737–742 (2015)

    Google Scholar 

  25. T. Tian, M. Zheng, J. Lin, X. Meng, Y. Ding, Amorphous Ni–Fe double hydroxide hollow nanocubes enriched with oxygen vacancies as efficient electrocatalytic water oxidation catalysts. Chem. Commun. 55(8), 1044–1047 (2019)

    Google Scholar 

  26. L. Xu, F.-T. Zhang, J.-H. Chen, X.-Z. Fu, R. Sun, C.-P. Wong, Amorphous NiFe nanotube arrays bifunctional electrocatalysts for efficient electrochemical overall water splitting. ACS Appl. Energy Mater. 1(3), 1210–1217 (2018)

    Google Scholar 

  27. C.-H. Shin, Y. Wei, G. Park, J. Kang, J.-S. Yu, High performance binder-free Fe–Ni hydroxides on nickel foam prepared in piranha solution for the oxygen evolution reaction. Sustain. Energy Fuels 4(12), 6311–6320 (2020)

    Google Scholar 

  28. M. Kuang, J. Zhang, D. Liu, H. Tan, K.N. Dinh, L. Yang, H. Ren, W. Huang, W. Fang, J. Yao, X. Hao, J. Xu, C. Liu, L. Song, B. Liu, Q. Yan, Amorphous/crystalline heterostructured cobalt-vanadium-iron (Oxy)hydroxides for highly efficient oxygen evolution reaction. Adv. Energy Mater. 10(43), 2002215 (2020)

    Google Scholar 

  29. L. Zhang, C. Lu, F. Ye, Z. Wu, Y. Wang, L. Jiang, L. Zhang, C. Cheng, Z. Sun, L. Hu, Vacancies boosting strategy enabling enhanced oxygen evolution activity in a library of novel amorphous selenite electrocatalysts. Appl. Catal. B: Environ. 284, 119758 (2021)

    Google Scholar 

  30. M. Chen, S. Lu, X.-Z. Fu, J.-L. Luo, Core-shell structured NiFeSn@NiFe (Oxy)hydroxide nanospheres from an electrochemical strategy for electrocatalytic oxygen evolution reaction. Adv. Sci. 7(10), 1903777 (2020)

    Google Scholar 

  31. F. Zhang, Y. Shi, T. Xue, J. Zhang, Y. Liang, B. Zhang, In situ electrochemically converting Fe2O3–Ni(OH)2 to NiFe2O4–NiOOH: a highly efficient electrocatalyst towards water oxidation. Sci. China Mater. 60(4), 324–334 (2017)

    Google Scholar 

  32. M.W. Louie, A.T. Bell, An investigation of thin-film Ni–Fe oxide catalysts for the electrochemical evolution of oxygen. J. Am. Chem. Soc. 135(33), 12329–12337 (2013)

    Google Scholar 

  33. Z. Qiu, Y. Ma, T. Edvinsson, In operando Raman investigation of Fe doping influence on catalytic NiO intermediates for enhanced overall water splitting. Nano Energy 66, 104118 (2019)

    Google Scholar 

  34. S. Anantharaj, S. Kundu, S. Noda, “The Fe effect”: a review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 80, 105514 (2021)

    Google Scholar 

  35. Y. Li, Z. Gao, H. Bao, B. Zhang, C. Wu, C. Huang, Z. Zhang, Y. Xie, H. Wang, Amorphous nickel-cobalt bimetal-organic framework nanosheets with crystalline motifs enable efficient oxygen evolution reaction: ligands hybridization engineering. J. Energy Chem. 53, 251–259 (2021)

    Google Scholar 

  36. Z. Liu, B. Tang, X. Gu, H. Liu, L. Feng, Selective structure transformation for NiFe/NiFe2O4 embedded porous nitrogen-doped carbon nanosphere with improved oxygen evolution reaction activity. Chem. Eng. J. 395, 125170 (2020)

    Google Scholar 

  37. S.Y. Lim, S. Park, S.W. Im, H. Ha, H. Seo, K.T. Nam, Chemically deposited amorphous Zn-doped NiFeOxHy for enhanced water oxidation. ACS Catal. 10(1), 235–244 (2020)

    Google Scholar 

  38. S. Klaus, Y. Cai, M.W. Louie, L. Trotochaud, A.T. Bell, Effects of Fe electrolyte impurities on Ni(OH)2/NiOOH structure and oxygen evolution activity. J. Phys. Chem. C 119(13), 7243–7254 (2015)

    Google Scholar 

  39. D.S. Hall, D.J. Lockwood, S. Poirier, C. Bock, B.R. MacDougall, Raman and infrared spectroscopy of α and β phases of thin nickel hydroxide films electrochemically formed on nickel. J. Phys. Chem. A 116(25), 6771–6784 (2012)

    Google Scholar 

  40. H. Jiang, Y. Zhang, L. Xu, Z. Gao, J. Zheng, Q. Wang, C. Meng, J. Wang, Fabrication of (NH4)2V3O8 nanoparticles encapsulated in amorphous carbon for high capacity electrodes in aqueous zinc ion batteries. Chem. Eng. J. 382, 122844 (2020)

    Google Scholar 

  41. Z.-X. Shi, J.-W. Zhao, C.-F. Li, H. Xu, G.-R. Li, Fully exposed edge/corner active sites in Fe substituted-Ni(OH)2 tube-in-tube arrays for efficient electrocatalytic oxygen evolution. Appl. Catal. B: Environ. 298, 120558 (2021)

    Google Scholar 

  42. H. Xiao, H. Shin, W.A. Goddard, Synergy between Fe and Ni in the optimal performance of (Ni, Fe)OOH catalysts for the oxygen evolution reaction. Proc. Natl. Acad. Sci. 115(23), 5872–5877 (2018)

    Google Scholar 

  43. T. Zhou, Z. Cao, P. Zhang, H. Ma, Z. Gao, H. Wang, Y. Lu, J. He, Y. Zhao, Transition metal ions regulated oxygen evolution reaction performance of Ni-based hydroxides hierarchical nanoarrays. Sci. Rep. 7(1), 46154 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the Scientific Research Project in Henan Province (Grant No. 212102210449), Science and Technology Research Project of the Education Department in Henan (Grant No. 21A140016), and Key Laboratory of Electromagnetic Transformation and Detection open project of Henan Province.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuyun An or Jianguo Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6060 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, X., Hu, Q., Zhu, W. et al. Partially amorphous NiFe-based bimetallic hydroxide nanocatalyst for efficient oxygen evolution reaction. Appl. Phys. A 127, 865 (2021). https://doi.org/10.1007/s00339-021-05014-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05014-6

Keywords

Navigation