Skip to main content
Log in

A two-step method to obtain the 2D layers of SnSe2 single phase and study its physical characteristics for photovoltaic and photo-converter devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The two-dimensional (2D) layers of SnSe2, used for various photo-convertor and photovoltaic device applications, were synthesized using a two-step procedure. The Sn-Se alloy was prepared by direct fusion at 1125 °C in a vacuum-sealed quartz ampoule at stage one. Stage two deals with the deposition of 2D layers of Sn-Se alloy on corning glass substrate by thermal evaporation followed by their annealing under vacuum at temperatures between 323 and 573 K. The characteristics of Sn-Se 2D layers vary with change in the annealing temperature. The 2D layers obtained at annealing temperatures (Ta) between 473 and 573 K show high absorption coefficient (α) > 1 × 105 cm−1; their optical bandgap (Eg) value tunes between 1.84 and 1.96 eV. This bandgap range matches the visible region of the EM spectrum, indicating that these layers are suitable for photovoltaic solar cells. The re-evaporation of 'Se' from the deposited layers was observed at high temperatures, which causes porosity in the synthesized layers. The high porosity value in the SnSe2 layers was observed at Ta = 573 K; the films obtained at this temperature provide the mobility value of 677cm2/V, indicating the layers are more favorable to the electrical behavior of devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J. Cao, Z. Wang, Nanotechnology 25, 105705 (2014).

  2. K. Bindu, P.K. Nair, Semicond. Sci. Technol. 19, 1348 (2004)

    Article  ADS  Google Scholar 

  3. X. Yu, J. Zhu, Chem. Commun. 48, 3324 (2012)

    Article  Google Scholar 

  4. Y. Zhang, X. Jia, J. Alloys Compd. 667, 123 (2016)

    Article  Google Scholar 

  5. S.U. Rehman, F.K. Butt, J. Alloys Compd. 695, 194 (2017)

    Article  Google Scholar 

  6. R.W. Miles, O.E. Ogah, Thin Solid Films 517, 4702 (2009)

    Article  ADS  Google Scholar 

  7. B. Ghosh, M. Das, Semicond. Sci. Technol. 24, 025024 (2009).

  8. A.S. Pawbake, A. Date, Chemistry Select 1, 5380 (2016)

    Google Scholar 

  9. K. Assili, O. Gonzalez, Arab. J. Chem. 13, 1229 (2020)

    Article  Google Scholar 

  10. P. A. Lee, G. Said, J. Phys. D Ser. (2)1, 837 (1968).

  11. D.J. Lewis, P. Kevin, Inorg. Chem. Front. 1, 577 (2014)

    Article  Google Scholar 

  12. Y. Ding, B. Xiao, J. Phys. Chem. C 121(1), 225 (2017)

    Article  Google Scholar 

  13. Y. An, Y. Hou, Adv. Funct. Mater. 2002939 (2020).

  14. V. Nicolosi, M. Chhowalla, Science 340, 1226419 (2013)

    Article  Google Scholar 

  15. Y. An, K. Wang, npj Computational Materials 45, 1 (2021).

  16. B. Z. Sun, Z. Ma, Phys. Chem. Chemical Phys 1 (2015).

  17. S. Saha, A. Banik, Chem.-A European J. 22(44), 15634 (2016)

    Article  Google Scholar 

  18. A. Taube, A. Lapimska, Appl. Phys. Lett. 107, 013105 (2015)

    Article  ADS  Google Scholar 

  19. Y. Huang, K. Xu, Nanoscale 7, 17375 (2015)

    Article  ADS  Google Scholar 

  20. P.A. Fernandes, M.G. Sousa, Cryst. Engg. Comm. RSC Pub. 15, 10278 (2013)

    Article  Google Scholar 

  21. N.E. Makori, I.A. Amatalo, Am. J. Condens. Matter Phys. 4(5), 87 (2014)

    Google Scholar 

  22. P. Kevin, S.N. Malik, Chem. Commun. 50, 14328 (2014)

    Article  Google Scholar 

  23. N.D. Boscher, C.J. Carmalt, Thin Solid Films 516, 4750 (2008)

    Article  ADS  Google Scholar 

  24. N.R. Mathews, Sol. Energy 86(4), 1010 (2012)

    Article  ADS  Google Scholar 

  25. B. Subramanian, T. Mahalingam, Thin Solid Films 357, 119 (1999)

    Article  ADS  Google Scholar 

  26. Z. Zainal, A.J. Ali, Sol. Energy Mater. Sol. Cells 79, 125 (2003)

    Article  Google Scholar 

  27. N.A. Okereke, A.J. Ekpunobi, Chalcogenide Lett. 7, 531 (2010)

    Google Scholar 

  28. V.E. Drozd, I.O. Nikiforova, J. Phys. D: Appl. Phys. 42, 125306 (2009)

    Article  ADS  Google Scholar 

  29. M.Z. Xue, J. Yao, J. Electrochem. Soc. 153, 270 (2006)

    Article  Google Scholar 

  30. R. Teghil, A. Santagata, Appl. Surf. Sci. 90, 505 (1995)

    Article  ADS  Google Scholar 

  31. C. Guillen, J. Montero, Phys. Status Solidi 208(3), 679 (2011)

    Article  ADS  Google Scholar 

  32. B.T. Jheng, P.T. Liu, Opt. Lett. 13(37), 2760 (2012)

    Article  ADS  Google Scholar 

  33. J. Heo, G.H. Kim, Sci. Rep. 6, 36608 (2016)

    Article  ADS  Google Scholar 

  34. G.X. Liang, P. Fan, J. Alloys Compd. 610, 337 (2014)

    Article  Google Scholar 

  35. J. Sharma, R. Singh, J. Alloys and Compd. 724, 62 (2017)

    Article  Google Scholar 

  36. N. Kumar, Am. J. Mater. Sci. 2, 41 (2012)

    Article  Google Scholar 

  37. S. Rajesh, M.M. Parvathi, A.I.P. Conf, Proc. 1451, 206 (2012)

    Google Scholar 

  38. S. Acharya, O.N. Srivastava, J. Cryst. Growth 55, 395 (1981)

    Article  ADS  Google Scholar 

  39. B. Palosz, E. Salje, J. Appl. Crystallogr. 22, 622 (1989)

    Article  Google Scholar 

  40. M. Tannarana, P. Pataniya, Applied Surface Sci. 462, 856 (2018)

    Article  ADS  Google Scholar 

  41. A.J. Pearson, T. Wang, Macromolecules 45(3), 1499 (2012)

    Article  ADS  Google Scholar 

  42. S. Kumar, F. Maury, Sci. Rep. 6, 37699 (2016)

    Article  ADS  Google Scholar 

  43. V. Sharma, J. Phys. Condens. Matter 18, 10279 (2006)

    Article  ADS  Google Scholar 

  44. A.K. Garg, O.P. Agnihotri, Journal of Appl. Phys. 47, 3 (1976)

    Article  Google Scholar 

  45. M.R. Aguiar, R. Caram et al., J. Mater. Sci. 34, 4607 (1999)

    Article  ADS  Google Scholar 

  46. K. Saritha, G.P. Reddy, Materials Today: Proceedings 3, 4128 (2016)

    Google Scholar 

  47. W. C. Tan, PhD thesis, Optical Properties of Amorphous Selenium Films (University of Saskatchewan, Canada, 2006), pp. 41.

  48. L. Amalraj, M. Jayachandran, Mater. Res. Bull. 39, 2193 (2004)

    Article  Google Scholar 

  49. S. Anwar, S. Gowthamaraju, Mat. Chem. & Phys. 153, 236 (2015)

    Article  Google Scholar 

  50. Z. Zainal, S. Nagalingam, Sol. Energy Mater. Sol. Cells 81, 261 (2004)

    Article  Google Scholar 

  51. S. Jeewan, S. Randhir, J. Alloys and Compd. 724, 62 (2017)

    Article  Google Scholar 

  52. B. D. Cullity, Elements of X-ray diffraction, (Addison-Wesley Publishing Co. Inc. Reading Massachusetts, 1956), pp. 1–531

  53. L. Eckertova, Physics of Thin Films, 2nd edn. (Plenum Press, New York, 1984), pp. 1–340

    Google Scholar 

  54. G.B. Williamson, R.C. Smallman, Philos. Magn. 1, 34 (1956)

    Article  ADS  Google Scholar 

  55. M. Dhanam, R.P. Rajeev, Mater. Chem. Phys. 107, 289 (2008)

    Article  Google Scholar 

  56. R. Niranjan, N. Padha, Mater Chem Phys 257, 123823 (2021)

    Article  Google Scholar 

  57. C. Perez-Vicente, C. Julien, Mat. Sci. Eng. B. 47, 137 (1997)

    Article  Google Scholar 

  58. Y. Zhang, Y. Shi, nanomaterials: MDPI 8, 515 (2018).

  59. A.S. Pawbake, M.S. Pawar, Nanoscale 8, 3018 (2016)

    Article  ADS  Google Scholar 

  60. A. Smith, P. Meek, J. Phys. C Solid State Phys. 10, 1321 (1977)

    Article  ADS  Google Scholar 

  61. E. Lorchat, G. Froehlicher et al., ACS Nano 10, 2752 (2016)

    Article  Google Scholar 

  62. R. Niranjan, J. Mat. Sc: Mat in Electronics 31, 3172 (2020)

    Google Scholar 

  63. V. Kumar, P. Kumar, J. Mater Sci. Mater. Electronics 27, 4043 (2016)

    Article  Google Scholar 

  64. H.R. Chandrasekhar, R.G. Humphreys, Phys. Rev. B: Solid State 15, 2177 (1977)

    Article  ADS  Google Scholar 

  65. V.S. Minaev, S.P. Timoshenkova, J. Optoelectron. Adv. M. 7, 1717 (2005)

    Google Scholar 

  66. Y. Leng, Materials Characterization: Introduction to Microscopic and Spectroscopic Methods, 2nd edn. (Wiley, London, 2013), pp. 1–127

    Google Scholar 

  67. B.J. Inkson, Materials Characterization Using Nondestructive Evaluation (NDE) Methods Sheffield, 1st edn. (Woodhead Publishing, United Kingdom, 2016), pp. 1–320

    Google Scholar 

  68. G. Hema Chandra, J Cryst Growth 306, 68 (2007)

    Article  ADS  Google Scholar 

  69. F.A. Akgul, G. Akgul, Mater. Chem. Phys. 147, 987 (2014)

    Article  Google Scholar 

  70. T. Prasada Rao, M.C. Santoshkumar, Appl Surface Sci. 255, 4579 (2009)

    Article  ADS  Google Scholar 

  71. W. Mahmood, J. Ali et al., Optik 158, 1558 (2018)

    Article  ADS  Google Scholar 

  72. O.S. Heavens, Rep. Prog. Phys. 23, 1 (1960)

    Article  ADS  Google Scholar 

  73. T.G. Mayerhofer, S. Pahlow, Analy Royal Soc. Chem. 145, 3385 (2020)

    Google Scholar 

  74. T.K. Subramanyam, Cryst Res. Technol. 34, 98 (1999)

    Article  Google Scholar 

  75. Z. Zainal, A. Kassim, Mater. Lett. 58, 2199 (2004)

    Article  Google Scholar 

  76. S.K. Tripathy, T.N.V.P. Rao, Int. J. Sci. Res. (IJSR) 5, 591 (2016)

    Google Scholar 

  77. J. Tauc, R. Grigorovici, Phys. Status Solidi 15, 627 (1966)

    Article  Google Scholar 

  78. I.V. Bodnar, Semiconductors 50(6), 715 (2016)

    Article  ADS  Google Scholar 

  79. T.A. Hendia, L.I. Soliman, Thin Solid Films 261, 322 (1995)

    Article  ADS  Google Scholar 

  80. C. Jullien, A. Chery, Phys. Stat. Sol. (a) 118, 553 (1990)

    Article  ADS  Google Scholar 

  81. T.P. Sharma, S.K. Sharma, Indian J. Pure Appl. Phys. 28(8), 486 (1990)

    Google Scholar 

  82. P. Herve, L.K.J. Vandamme, Infared. Phys. Technol. 35(4), 609 (1994)

    Google Scholar 

  83. B. Celustka, D. Bidjin, Phys. Status Solidi (a) 6, 699 (1971)

    Article  ADS  Google Scholar 

  84. D. Beena, K.J. Lethy, Appl. Surf. Sci. 255, 8334 (2009)

    Article  ADS  Google Scholar 

  85. A. Banotra, N. Padha, Mat. Res Express 4, 116409 (2017)

    Article  ADS  Google Scholar 

  86. S.P. Nehra, S. Chander, Mater. Sci. Semicond. Process. 40, 26 (2015)

    Article  Google Scholar 

  87. L.J. van der Pauw, Philips Tech. Rev. 20, 220 (1958)

    Google Scholar 

  88. E.B. Salgado, M.T.S. Nair, Thin Solid Films 598, 149 (2016)

    Article  ADS  Google Scholar 

  89. D.M. Escobar, M. Ramachandran, Thin Solid Films 535, 390 (2013)

    Article  ADS  Google Scholar 

  90. S.M. Patel, S.S. Patel, J. Materials Science 24, 3245 (1989)

    Article  ADS  Google Scholar 

  91. B.L. Evans, R.A. Hazelwood, Brit. J. Appl. Phys. D 2, 2 (1969)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to the university grants commission (UGC), Government of India, to award the major research project (UGC-MRP) to the corresponding author. To extend this work's facilities, the authors are also thankful to CMSE, National Institute of Technology (NIT), Hamirpur (HP), India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Padha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padha, N., Kumar, S. A two-step method to obtain the 2D layers of SnSe2 single phase and study its physical characteristics for photovoltaic and photo-converter devices. Appl. Phys. A 127, 877 (2021). https://doi.org/10.1007/s00339-021-04992-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04992-x

Keywords

Navigation