Skip to main content
Log in

Multi-walled carbon nanotubes in powder mixed electrical discharge machining: an experimental study, state of the art and feasibility prospect

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The present study explores the effectiveness of powder mixed electrical discharge machining (PM-EDM) by utilizing the unique properties of multi-walled carbon nanotubes (MWCNTs) on machining of hard-grade medical alloy (β-type titanium). To investigate the capabilities of the PM-EDM in terms of machinability, biocompatibility, tribological characteristics and surface integrity, the experiments were conducted according to the L18 orthogonal array. The analysis of variance (ANOVA) technique was employed for identifying the significant process parameters affecting metal removal rate (MRR). The ANOVA results revealed that the dielectric medium was the most significant factor that majorly affects the MRR (63.25 mm3/mm) and it was followed by the peak current (Ip), pulse on (pon), pulse off (poff) and electrode material. A 15A peak current at pulse-on/pulse-off time of 100/20 μs by using MWCNTs in the dielectric medium with a tungsten/copper tool electrode is the optimum parametric set. The biocompatibility of machined surfaces was scrutinized by cytotoxicity test which confirmed that the machining with MWCNTs elevated the biological responses of reformed surface and contributed to achieve the cell viability of 94%. The pin-on-disc wear results revealed that MWCNTs machined surface had the least value of wear rate and acted as a low frictional surface. Also, the recast layer produced after MWCNTs machining adhered strongly to the base material and exhibited twofold adhesion strength as compared to the water machined substrate. The formation of oxides and carbides in the presence of MWCNTs entities contributed to the tribological behaviour and biocompatibility of alloy. Thus, the excellent assets of MWCNTs elevate the potential of EDMing by diminishing the bottlenecks like the creation of surface defects in conventional EDM (deionized water medium) at high discharge energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Su, C. Luo, Z. Zhang, H. Hermawan, D. Zhu, J. Huang, Y. Liang, G. Li, L. Ren, Bioinspired surface functionalization of metallic biomaterials. J. Mech. Behav. Biomed. Mater. 77, 90–105 (2018)

    Article  Google Scholar 

  2. S. Devgan, S.S. Sidhu, Potential of electrical discharge treatment incorporating MWCNTs to enhance the corrosion performance of the β-titanium alloy. Appl. Phys. A 126(3), 1–16 (2020)

    Article  Google Scholar 

  3. F. Guillemot, Recent advances in the design of titanium alloys for orthopedic applications. Expert Rev. Med. Devices 2(6), 741–748 (2005)

    Article  Google Scholar 

  4. S.S. Sidhu, H. Singh, M.A.H. Gepreel, A Review on alloy design, biological response, and strengthening of β-Titanium Alloys as biomaterials. Mater. Sci. Eng. C 121, 111661 (2020)

    Article  Google Scholar 

  5. A. Kumar, S. Maheshwari, C. Sharma, N. Beri, Research developments in additives mixed electrical discharge machining (AEDM): a state of art review. Mater. Manuf. Processes 25(10), 1166–1180 (2010)

    Article  Google Scholar 

  6. A. Mahajan, S.S. Sidhu, T. Ablyaz, EDM surface treatment: an enhanced biocompatible interface, in Biomaterials in Orthopaedics and Bone Regeneration. ed. by S.B. Preetkanwal, S.S. Sarabjeet, B. Marjan, P. Chander (Springer, Singapore, 2019), pp. 33–40

    Chapter  Google Scholar 

  7. A. Singh, R.K. Ghadai, K. Kalita, P. Chatterjee, D. Pamučar, EDM process parameter optimization for efficient machining of Inconel-718. Facta Univ. Ser. Mech. Eng. 18(3), 473–490 (2020)

    Google Scholar 

  8. Y.H. Guu, H. Hocheng, C.Y. Chou, C.S. Deng, Effect of electrical discharge machining on surface characteristics and machining damage of AISI D2 tool steel. Mater. Sci. Eng. A 358(1–2), 37–43 (2003)

    Article  Google Scholar 

  9. A. Perumal, A. Azhagurajan, R. Prithivirajan, S.S. Kumar, Experimental investigation and optimization of process parameters in Ti–(6242) alpha–beta alloy using electrical discharge machining. J. Inorg. Organomet. Polym. Mater. 31(4), 1787–1800 (2021)

    Article  Google Scholar 

  10. Y.F. Luo, The dependence of interspace discharge transitivity upon the gap debris in precision electrodischarge machining. J. Mater. Process. Technol. 68(2), 121–131 (1997)

    Article  Google Scholar 

  11. A. Mahajan, S.S. Sidhu, S. Devgan, MRR and surface morphological analysis of electrical-discharge-machined Co–Cr alloy. Emerg. Mater. Res. 9(1), 42–46 (2019)

    Google Scholar 

  12. G. Kucukturk, C. Cogun, A new method for machining of electrically nonconductive workpieces using electric discharge machining technique. Mach. Sci. Technol. 14(2), 189–207 (2010)

    Article  Google Scholar 

  13. H. Kumar, Development of mirror like surface characteristics using nano powder mixed electric discharge machining (NPMEDM). Int. J. Adv. Manuf. Technol. 76(1–4), 105–113 (2015)

    Article  Google Scholar 

  14. G. Singh, S.S. Sidhu, P.S. Bains, A.S. Bhui 2019 Surface evaluation of ED machined 316L stainless steel in TiO2 nano-powder mixed dielectric medium. Mater. Today Proc. 18, 1297–1303.

  15. G. Singh, T.R. Ablyaz, E.S. Shlykov, K.R. Muratov, A.S. Bhui, S.S. Sidhu, Enhancing corrosion and wear resistance of Ti6Al4V alloy using CNTs mixed electro-discharge process. Micromachines 11(9), 850 (2020)

    Article  Google Scholar 

  16. X. Wang, S. Yi, H. Guo, C. Li, S. Ding, Erosion characteristics of electrical discharge machining using graphene powder in deionized water as dielectric. Int. J. Adv. Manuf. Technol. 108(1), 357–368 (2020)

    Article  Google Scholar 

  17. V.D. Bui, J.W. Mwangi, A. Schubert, Powder mixed electrical discharge machining for antibacterial coating on titanium implant surfaces. J. Manuf. Process. 44, 261–270 (2019)

    Article  Google Scholar 

  18. T.D. Nguyen, P.H. Nguyen, L.T. Banh, Die steel surface layer quality improvement in titanium μ-powder mixed die sinking electrical discharge machining. Int. J. Adv. Manuf. Technol. 100(9), 2637–2651 (2019)

    Article  Google Scholar 

  19. M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications (Elsevier, 1996)

    Google Scholar 

  20. P.J. Harris, Carbon nanotubes and related structures: new materials for the twenty-first century. Am. J. Phys. 72(3), 415 (2004)

    Article  ADS  Google Scholar 

  21. L.P. Ichkitidze, S.V. Selishchev, A.Y. Gerasimenko, V.M. Podgaetsky, Mechanical properties of bulk nanocomposite biomaterial. Biomed. Eng. 49(5), 308–311 (2016)

    Article  Google Scholar 

  22. M.A. Hussain, A. Maqbool, F.A. Khalid, N. Bakhsh, A. Hussain, J.U. Rahman, J.K. Park, T.G. Park, L.J. Hyun, M.H. Kim, Mechanical properties of CNT reinforced hybrid functionally graded materials for bioimplants. Trans Nonferrous Met Soc China 24, s90–s98 (2014)

    Article  Google Scholar 

  23. V. Kavimani, K.S. Prakash, M.A. Pandian, Influence of r-GO addition on enhancement of corrosion and wear behavior of AZ31 MMC. Appl. Phys. A 123(8), 1–11 (2017)

    Article  Google Scholar 

  24. P.S. Bains, G. Singh, A.S. Bhui, S.S. Sidhu, Parametric evaluation of medical grade titanium alloy in MWCNTs mixed dielectric using graphite electrode, in Biomaterials in Orthopaedics and Bone Regeneration. ed. by S.B. Preetkanwal, S.S. Sarabjeet, B. Marjan, P. Chander (Springer, Singapore, 2019), pp. 1–14

    Chapter  Google Scholar 

  25. M. Gostimirovic, P. Kovac, M. Sekulic, B. Skoric, Influence of discharge energy on machining characteristics in EDM. J. Mech. Sci. Technol. 26(1), 173–179 (2012)

    Article  Google Scholar 

  26. V. Yadav, V.K. Jain, P.M. Dixit, Thermal stresses due to electrical discharge machining. Int. J. Mach. Tools Manuf. 42(8), 877–888 (2002)

    Article  Google Scholar 

  27. P.V. Ramarao, M.A. Faruqi, Characteristics of the surfaces obtained in electro-discharge machining. Precis. Eng. 4(2), 111–113 (1982)

    Article  Google Scholar 

  28. H.K. Kansal, S. Singh, P. Kumar, Parametric optimization of powder mixed electrical discharge machining by response surface methodology. J. Mater. Process. Technol. 169(3), 427–436 (2005)

    Article  Google Scholar 

  29. A. Mahajan, S. Devgan, S.S. Sidhu, Surface alteration of biomedical alloys by electrical discharge treatment for enhancing the electrochemical corrosion, tribological and biological performances. Surf. Coat. Technol. 405, 126583 (2021)

    Article  Google Scholar 

  30. Y. Xie, H.M. Hawthorne, A model for compressive coating stresses in the scratch adhesion test. Surf. Coat. Technol. 141(1), 15–25 (2001)

    Article  Google Scholar 

  31. K.H. Syed, K. Palaniyandi, Performance of electrical discharge machining using aluminium powder suspended distilled water. Turk. J. Eng. Environ. Sci. 36(3), 195–207 (2012)

    Google Scholar 

  32. H. Rafii-Tabar, Computational modelling of thermo-mechanical and transport properties of carbon nanotubes. Phys. Rep. 390(4–5), 235–452 (2004)

    Article  ADS  Google Scholar 

  33. S.M. Uddin, T. Mahmud, C. Wolf, C. Glanz, I. Kolaric, C. Volkmer, H. Höller, U. Wienecke, S. Roth, H.J. Fecht, Effect of size and shape of metal particles to improve hardness and electrical properties of carbon nanotube reinforced copper and copper alloy composites. Compos. Sci. Technol. 70(16), 2253–2257 (2010)

    Article  Google Scholar 

  34. P. Janmanee, A. Muttamara, Surface modification of tungsten carbide by electrical discharge coating (EDC) using a titanium powder suspension. Appl. Surf. Sci. 258(19), 7255–7265 (2012)

    Article  ADS  Google Scholar 

  35. H. Marashi, A.A. Sarhan, M. Hamdi, Employing Ti nano-powder dielectric to enhance surface characteristics in electrical discharge machining of AISI D2 steel. Appl. Surf. Sci. 357, 892–907 (2015)

    Article  ADS  Google Scholar 

  36. A. Mahajan, G. Singh, S. Devgan, S.S. Sidhu, EDM performance characteristics and electrochemical corrosion analysis of Co–Cr alloy and duplex stainless steel: a comparative study. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 235(4), 812–823 (2020)

    Article  Google Scholar 

  37. T. Muthuramalingam, B. Mohan, Influence of discharge current pulse on machinability in electrical discharge machining. Mater. Manuf. Processes 28(4), 375–380 (2013)

    Article  Google Scholar 

  38. R.S. Ruoff, D. Qian, W.K. Liu, Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements. C R Phys. 4(9), 993–1008 (2003)

    Article  ADS  Google Scholar 

  39. M.M. Sari, M.Y. Noordin, E. Brusa, Role of multi-wall carbon nanotubes on the main parameters of the electrical discharge machining (EDM) process. Int. J. Adv. Manuf. Technol. 68(5), 1095–1102 (2013)

    Article  Google Scholar 

  40. J.A. Rodríguez-González, C. Rubio-González, M. Jiménez-Mora, L. Ramos-Galicia, C. Velasco-Santos, Influence of the hybrid combination of multiwalled carbon nanotubes and graphene oxide on interlaminar mechanical properties of carbon fiber/epoxy laminates. Appl. Compos. Mater. 25(5), 1115–1131 (2018)

    Article  ADS  Google Scholar 

  41. E. Mooney, P. Dockery, U. Greiser, M. Murphy, V. Barron, Carbon nanotubes and mesenchymal stem cells: biocompatibility, proliferation and differentiation. Nano Lett. 8(8), 2137–2143 (2008)

    Article  ADS  Google Scholar 

  42. A. Mahajan, S.S. Sidhu, S. Devgan, Examination of hemocompatibility and corrosion resistance of electrical discharge-treated duplex stainless steel (DSS-2205) for biomedical applications. Appl. Phys. A 126(9), 1–11 (2020)

    Article  Google Scholar 

  43. M. Atarian, H.R. Salehi, M. Atarian, A. Shokuhfar, Effect of oxide and carbide nanoparticles on tribological properties of phenolic-based nanocomposites. Iran. Polym. J. 21(5), 297–305 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Mahajan.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devgan, S., Mahajan, A. & Sidhu, S.S. Multi-walled carbon nanotubes in powder mixed electrical discharge machining: an experimental study, state of the art and feasibility prospect. Appl. Phys. A 127, 806 (2021). https://doi.org/10.1007/s00339-021-04934-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04934-7

Keywords

Navigation