Skip to main content
Log in

Effect of CBD growth times on the ZnO microrods prepared on macroporous silicon

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study, Zinc Oxide (ZnO) microrods were prepared on chemically etched macroporous silicon (mPS) substrates by chemical bath deposition (CBD) technique. Effect of CBD growth times (1, 3, and 5 h) on the physical, structural, elemental, and optical properties were analyzed using field emission scanning electron microscopy (FESEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD), Raman spectroscopy, and Ultraviolet–visible (UV–Vis) spectroscopy. The electrochemical etching process results a deep porous layer thickness of 66.91 µm and large macroporous size of 6.64 µm. Morphological analysis reveals the increasing size as well as the density of ZnO microrods on the mPS substrates, proportional to the growth times. The elemental analysis by EDX detected the presence of silicon and oxygen in mPS and the presence of silicon, zinc, and oxygen in ZnO on mPS without other impurities. XRD revealed the polycrystalline ZnO wurtzite hexagonal structures with intense peak at (002). Raman scattering analysis provides observation on broadening and shifting of Raman spectra at 302 and 520 cm−1 of mPS and the presence of E2 (High) mode by ZnO on mPS at a longer CBD growth time of 5 h. UV–Vis spectra revealed that the bandgap of the structures was found at 2.90 eV for mPS, and at (3.10, 3.12, and 3.15 eV) for ZnO on mPS, which is lower than the standard value of 3.37 eV for bulk ZnO. The incorporation of ZnO microrods on the mPS in this work was unique as the structure was unevenly grown on the inter-connected base substrate and could find a potential application as optoelectronic device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Kanemitsu et al., Visible photoluminescence of silicon-based nanostructures: porous silicon and small silicon-based clusters. Appl. Phys. Lett. 61(20), 2446–2448 (1992)

    Article  ADS  Google Scholar 

  2. T. Edvinsson, Optical quantum confinement and photocatalytic properties in dimensional nanostructures. R. Soc. Chem. 5(180387), 17 (2018)

    Google Scholar 

  3. B. Bruhn, Fabrication and Characterization of Single Luminescing Quantum Dots from 1D Silicon Nanostructures (KTH Royal Institure of Technology, 2012)

    Google Scholar 

  4. N. Rosli, M.M. Halim, K.M. Chahrour, R. Hashim, Incorporation of zinc oxide on macroporous silicon enhanced the sensitivity of macroporous silicon MSM photodetector. ECS J. Solid State Sci. Technol. 9(105005), 1–8 (2020)

    Google Scholar 

  5. J. Li, M.J. Sailor, Biosensors and bioelectronics synthesis and characterization of a stable, label-free optical biosensor from TiO 2 -coated porous silicon. Biosens. Bioelectron. 55, 372–378 (2014)

    Article  ADS  Google Scholar 

  6. P. Madyannik, T.V. Ivanova, T. Homola, A. Brykvin, R. Nagumothu, Photoelectrocatalytic activity of ZnO coated nano-porous silicon by atomic layer deposition. R. Soc. Chem. 1039, 1–8 (2016)

    Google Scholar 

  7. M. Pavlenko, K. Siuzdak, E. Coy, M. Jancelewicz, S. Jurga, I. Iatsunskyi, Silicon/TiO 2 core-shell nanopillar photoanodes for enhanced photoelectrochemical water oxidation. Int. J. Hydrog. Energy 42(51), 1–10 (2017)

    Article  Google Scholar 

  8. R.G. Singh et al., Electronic excitations induced modifications of structural and optical properties of ZnO-porous silicon nanocomposites. Nucl. Instrum. Methods Phys. Res. Sect. B 267(14), 2399–2402 (2009)

    Article  ADS  Google Scholar 

  9. O. Urper, O. Karacasu, H. Cimenoglu, N. Baydogan, Annealing ambient effect on electrical properties of ZnO:Al/p-Si heterojunctions. Superlattices Microstruct. 125(2019), 81–87 (2019)

    Article  ADS  Google Scholar 

  10. A. Singh, H.L. Vishwakarma, An existential study on structural, optical and electronic properties of ZnO nanoparticles and nanorods. Appl. Phys. 6(2), 28–32 (2014)

    Google Scholar 

  11. G.-C. Yi, Semiconductor Nanostructures for Dptoelectronic Devices (Springer, Berlin, Heidelberg, 2012)

    Book  Google Scholar 

  12. O.F. Farhat, M.M. Halim, N.M. Ahmed, M.A. Qaeed, ZnO nanofiber (NFs) growth from ZnO nanowires (NWs) by controlling growth temperature on flexible Teflon substrate by CBD technique for UV photodetector. Superlattices Microstruct. 100, 1120–1127 (2016)

    Article  ADS  Google Scholar 

  13. O.F. Farhat, M.M. Halim, M.J. Abdullah, M.K.M. Ali, N.M. Ahmed, M. Bououdina, Fabrication and characterization of ZnO nanowires by wet oxidation of Zn thin film deposited on Teflon substrate. Superlattices Microstruct. 86, 236–242 (2015)

    Article  ADS  Google Scholar 

  14. J. Jadhav, S. Biswas, Surface plasmon enhanced near-UV emission in monodispersed ZnO: Ag core e shell type nanoparticles synthesized by a wet chemical method. Superlattices Microstruct. 91, 8–21 (2016)

    Article  ADS  Google Scholar 

  15. N. Rosli, M.M. Halim, M.R. Hashim, W. Maryam, M.F.M. Rusdi, A.R. Muhammad, Effect of the seeding thickness on the growth of ZnO nanorods prepared by CBD. IOP Conf. Ser. Mater. Sci. Eng. 854(012074), 1–8 (2020)

    Google Scholar 

  16. N. Rosli, M.M. Halim, R. Hashim, Growth of ZnO microstructure on porous silicon. Solid State Phenom. 290, 261–266 (2019)

    Article  Google Scholar 

  17. N. Rosli, M.M. Halim, M.R. Hashim, W. Maryam, Influence of concentration on the geometry of ZnO nanostructures prepared by chemical bath deposition. J. Phys. Conf. Ser. 1371(012015), 1–8 (2019)

    Google Scholar 

  18. H. Cai, H. Shen, Y. Yin, L. Lu, J. Shen, Z. Tang, The effects of porous silicon on the crystalline properties of ZnO thin films. J. Phys. Chem. Solids 70(6), 967–971 (2009)

    Article  ADS  Google Scholar 

  19. L.S. Chuah, Z. Hassan, S.S. Tneh, Zinc oxide nanorods on porous silicon/silicon substrates. Optoelectron. Adv. Mater. 11(11), 1637–1640 (2009)

    Google Scholar 

  20. R. Viter et al., Chemical photoluminescence immunosensor based on bovine leukemia virus proteins immobilized on the ZnO nanorods. Sens. Actuators B Chem. 285, 601–606 (2019)

    Article  Google Scholar 

  21. M. Pavlenko, V. Myndrul, G. Gottardi, E. Coy, M. Jancelewicz, I. Iatsunskyi, Porous silicon-zinc oxide nanocomposites prepared by atomic layer deposition for biophotonic applications. Mater. (Basel) 13(1987), 1–12 (2020)

    Google Scholar 

  22. A. Tamashevski et al., Zinc oxide nanorod based immunosensing platform for the determination of human leukemic cells. Talanta 200, 378–386 (2019)

    Article  Google Scholar 

  23. R. Ramadan, V. Torres-costa, R.J. Martín-Palma, Fabrication of zinc oxide and nanostructured porous silicon composite micropatterns on silicon. Coatings 529, 1–9 (2020)

    Google Scholar 

  24. A. Moehlecke, T.L. Marcondes, I. Zanesco, M. Ly, E. Solar, P. Alegre, Cost-effective thin n-type silicon solar cells with rear emitter. Mater. Res. 23(1), 1–6 (2020)

    Article  Google Scholar 

  25. H. Chen, F. Chen, Optical properties of n-type porous silicon obtained by photoelectrochemical etching. Solid State Commun. 111, 681–685 (1999)

    Article  ADS  Google Scholar 

  26. Urmann, K., Tenenbaum, E., Walter, J.G., Segal, E.: Electrochemically engineered nanoporous materials 220, 93-116 (2015)

  27. M. J. Sailor, Fundamentals of Porous Silicon Preparation, in M.J. Sailor (Ed.) Porous Silicon in Practice, 1–42 (2011)

  28. A. Kashyout, H.M.A. Soliman, M. Nabil, A.A. Bishara, Fabrication of congo red/oxidized porous silicon (CR/OPS) pH-sensors. Mater. Sci. Appl. 4, 79–87 (2013)

    Google Scholar 

  29. R. Bhaskar, J. Butt, Investigating the effects of annealing on the mechanical properties of FFF-printed thermoplastics. J. Manuf. Mater. Process. Artic. 4(38), 1–20 (2020)

    Google Scholar 

  30. A. Tiwari, Growth of ZnO nanowire and its application as UV photodetector, 1–41 (2014)

  31. T. Ben Nasr, N. Kamoun, M. Kanzari, R. Bennaceur, Effect of pH on the properties of ZnS thin films grown by chemical bath deposition. Thin Sol. Film. 500, 4–8 (2006)

    Article  ADS  Google Scholar 

  32. P. Taylor, Z. Khusaimi, Controlled growth of zinc oxide nanorods by aqueous-solution method. Synth. React. Inorgan., Met. Nano-Metal. Chem. 40(3), 190–194 (2010)

    Article  Google Scholar 

  33. Z. Khusaimi, M. Hafiz Mamat, M.Z. Sahdan, N. Abdullah, M. Rusop, The effect of stabiliser’s molarity to the growth of ZnO nanorods. Defect Diffus. Forum 312–315, 99–103 (2011)

    Article  Google Scholar 

  34. A. Kathalingam, N. Ambika, M.R. Kim, J. Elanchezhiyan, Chemical bath deposition and characterization of nanocrystalline ZnO thin films. Mater. Sci. 10(4), 303–307 (1971)

    Google Scholar 

  35. S. Xu, B. Weintraub, and Z. L. Wang, Zinc oxide nanowire arrays on flexible substrates, in Semiconductor nanomaterials for flexible technologies, 197–226 (2010)

  36. T.R. Chetia, M.S. Ansari, M. Qureshi, Graphitic carbon nitride as a photovoltaic booster in quantum dot sensitized solar cells: a synergistic approach for enhanced charge separation and injection. J. Mater. Chem. A 4, 5528–5541 (2016)

    Article  Google Scholar 

  37. K. Govender, D.S. Boyle, P.B. Kenway, P.O. Brien, Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. 14, 2575–2591 (2004)

    Article  Google Scholar 

  38. S.R. Brintha, M. Ajitha, Synthesis and characterization of ZnO nanoparticles via aqueous solution, sol-gel and hydrothermal methods. Appl. Chem. 8(11), 66–72 (2015)

    Google Scholar 

  39. E. Kayahan, White light luminescence from annealed thin ZnO deposited porous silicon. J. Lumin. 130(7), 1295–1299 (2010)

    Article  Google Scholar 

  40. M. Kashif, U. Hashim, M.E. Ali, K.L. Foo, S.M.U. Ali, Morphological, structural, and electrical characterization of sol–gel-synthesized ZnO nanorods. Nanomater. Nanotechnol. 1–7 (2013)

  41. H.A. Hadi, R.A. Ismail, N.F. Habubi, Fabrication and characterization of porous silicon layer prepared by photo-electrochemical etching in CH 3 OH: HF solution. Int. Lett. Chem. Phys. Astron. 3, 29–36 (2013)

    Article  Google Scholar 

  42. Q. Hussain, N.A. Naz, A. Akbar, A. Ali, Structural characteristics of porous silicon. Surf. Eng. Mater. Adv. Technol. 4(April), 105–110 (2014)

    Google Scholar 

  43. W.M. Abdulridha, R.G. Kadhim, R.A. Ismail, Impact of changing anodization current density on structural and morphological properties of PSi layer. Int. Lett. Chem. Phys. Astron. 53(1), 180–192 (2015)

    Article  Google Scholar 

  44. M. Das, D. Sarkar, Structural and optical properties of n-type porous silicon fabricated in dark. Pure Appl. Phys. 51, 724–727 (2013)

    Google Scholar 

  45. M.F. Khan et al., Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: potential role as nano-antibiotics. Nature 6(1), 1–12 (2016)

    Google Scholar 

  46. V.A. Popovich, N. Van Der Pers, M. Janssen, J. Wright, I.M. Richardson, Residual and bending stress measurements by X-ray diffraction and synchrotron diffraction analysis in silicon solar cells. IEEE Potentials 978(1), 442–447 (2011)

    Google Scholar 

  47. M. Su, S. Kim, G. Nam, D. Lee, J. Leem, Effects of growth temperature for buffer layers on properties of ZnO thin films grown on porous silicon by plasma-assisted molecular beam epitaxy. Opt. Mater. (Amst) 34(9), 1543–1548 (2012)

    Article  ADS  Google Scholar 

  48. D. Tahir, K.H. Jae, Effect of growth temperature on structural and electronic properties of ZnO thin films. AIP Conf. Proc. 1801(020007), 1–5 (2017)

    Google Scholar 

  49. K. Mosalagae, D.M. Murape, L.M. Lepodise, Effects of growth conditions on properties of CBD synthesized ZnO nanorods grown on ultrasonic spray pyrolysis deposited ZnO seed layers. Heliyon 6(e04458), 1–10 (2020)

    Google Scholar 

  50. R.K. Sendi, S. Mahmud, Stress control in ZnO nanoparticle-based discs via high-oxygen thermal annealing at various temperatures. J. Phys. Sci. 24(1), 1–15 (2013)

    Google Scholar 

  51. B. Abdallah, A. Ismail, H. Kashoua, W. Zetoun, Effects of deposition time on the morphology, structure, and optical properties of PbS thin films prepared by chemical bath deposition. J. Nanomater. 1826959, 1–9 (2018)

    Article  Google Scholar 

  52. M. Kadle et al., Raman spectroscopy of porous silicon substrates. Optik (Stuttg) 174, 347–353 (2018)

    Article  Google Scholar 

  53. S. Weidemann et al., Controlled pore formation on mesoporous single crystalline silicon nanowires: threshold and mechanisms. J. Nanomater. 2015, 1–16 (2014)

    Article  Google Scholar 

  54. F. Kozlowski, W. Lang, Spatially resolved Raman measurements at electroluminescent porous n silicon. J. Appl. Phys. 72, 5401–5408 (1992)

    Article  ADS  Google Scholar 

  55. M. Kosovi, O. Gamulin, M. Balarin, M. Ivanda, Đ Vedran, M. Risti, Phonon confinement effects in Raman spectra of porous silicon at non-resonant excitation condition. J. Raman Spectrosc. 45, 470–475 (2014)

    Article  ADS  Google Scholar 

  56. I. Iatsunskyi, P.S. Jurga, P.V. Smyntyna, M. Pavlenko, V. Myndrul, A. Zaleska, Raman spectroscopy of nanostructured silicon fabricated by metal-assisted chemical etching. Opt. Micro-Nanometrol. 9132, 1–7 (2014)

    Google Scholar 

  57. L. Zhen-Kun, K. Yi-Lan, C. Hao, H. Ming, Q. Yu, Residual stress on surface and cross-section of porous silicon studied by micro-Raman spectroscopy. Chin. Phys. Lett. 22(984), 3 (2005)

    ADS  Google Scholar 

  58. R. Shabannia, H. Abu Hassan, H. Mahmodi, N. Naderi, H.R. Abd, ZnO nanorod ultraviolet photodetector on porous silicon substrate. Semicond. Sci. Technol. 28(11), 115007 (2013)

    Article  ADS  Google Scholar 

  59. M. Yoshikawa et al., Characterization of ZnO nanoparticles by resonant Raman scattering and cathodoluminescence spectroscopies. Appl. Phys. Lett. 92(113115), 1–4 (2008)

    Google Scholar 

  60. A. Umar, S.H. Kim, J.H. Kim, A. Al-Hajry, Y.B. Hahn, Temperature-dependant non-catalytic growth of ultraviolet-emitting ZnO nanostructures on silicon substrate by thermal evaporation process. J. Alloys Compd. 463(1–2), 516–521 (2008)

    Article  Google Scholar 

  61. L.T.L. Anh, M.M. Neto, P.V. Thang, N.T.T. Mai, N.X. Sang, N.C. Tu, Optical and photocatalytic properties of in-situ Gr@ZnO microspindle composites prepared by hydrothermal method. J. Nanosci. Nanotechnol. 21(4), 2653–2659 (2021)

    Article  Google Scholar 

  62. X.L. Huang, S.Y. Ma, L.G. Ma, H.Q. Bian, C. Su, Microstructure and optical properties of ZnO/porous silicon nanocomposite films. Phys. E Low-Dimens. Syst. Nanostruct. 44(1), 190–195 (2011)

    Article  ADS  Google Scholar 

  63. J. Singh, Semiconductor bandstructures, in Semiconductor devices: basic principles, 1–18 (2000)

  64. M.R. Jimenéz-vivanco, G. García, J. Carrillo, V. Agarwal, Porous Si-SiO2 based UV microcavities. Sci. Rep. 10(2220), 1–21 (2020)

    Google Scholar 

  65. L. Canham, Introductory lecture: origins and applications of efficient visible photoluminescence from silicon-based nanostructures. R. Soc. Chem. 222, 10–81 (2020)

    Google Scholar 

  66. Q. Li, R. Jin, Photoluminescence from colloidal silicon nanoparticles: significant effect of surface. Nanotechnol. Rev. 6(6), 601–612 (2017)

    Article  Google Scholar 

  67. S. Rameshkumar, R. Henderson, R.B. Padamati, Improved surface functional and photocatalytic properties of hybrid ZnO-MoS2-deposited membrane for photocatalysis-assisted dye filtration. Membranes (Basel) 10(106), 1–18 (2020)

    Google Scholar 

  68. P. Bindu, S. Thomas, Optical properties of ZnO nanoparticles synthesised from a polysaccharide and ZnCl2. Acta Phys. Pol. A 131(6), 1474–1478 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work acknowledges support from the RUI grant under Universiti Sains Malaysia, 1001/PFIZIK/8011092, and the authors indebted to the staff of Nano-Optoelectronics Research and Technology Lab and Solid-State Lab, School of Physics, Universiti Sains Malaysia

Author information

Authors and Affiliations

Authors

Contributions

All co-authors have seen and agreed with the contents of the manuscript. N Rosli prepared the sample and characterized the measurements. N Rosli and MM Halim drafted the manuscript. MM Halim and MR Hashim revised the manuscript. All authors analyzed the results and prepared the final manuscript.

Corresponding author

Correspondence to Mohd Mahadi Halim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosli, N., Halim, M.M. & Hashim, M.R. Effect of CBD growth times on the ZnO microrods prepared on macroporous silicon. Appl. Phys. A 127, 712 (2021). https://doi.org/10.1007/s00339-021-04865-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04865-3

Keywords

Navigation