Skip to main content
Log in

Effect of sulphuric acid (H2SO4) on the growth process of two-dimensional zinc oxide (ZnO) structures prepared by chemical bath deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the effect of sulphuric acid (H2SO4) on the transformation of ZnO from its one-dimensional to two-dimensional structure was addressed. Here, the addition of H2SO4 of varying concentrations (5 mM, 10 mM, and 15 mM) into the precursor solution was done using the process of chemical bath deposition. Several characterisation methods such as X-ray diffraction (XRD), field-effect electron scanning microscopy (FESEM), X-ray photoelectron spectroscopy (XPS), and photoluminescence spectroscopy (PL) were then utilised to investigate the impact of H2SO4 on the prepared samples. The results subsequently revealed the morphological transformation of the ZnO samples from one-dimensional (1D) to two-dimensional (2D) morphology structures at the H2SO4 concentrations of 10 mM and 15 mM. Besides, the PL spectra for the samples prepared using varying H2SO4 concentrations displayed a red shift in the UV emission peak as the percentage was increased, as well as a decrement in its intensity. Based on the findings of this study, it can be concluded that the morphology of 1D ZnO nanorods can be converted to 2D via adjustments made to the H2SO4 content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M. Kimura, Emerging applications using metal-oxide semiconductor thin-film devices. Jpn. J. Appl. Phys. 58, 090503 (2019). https://doi.org/10.7567/1347-4065/ab1868

    Article  ADS  Google Scholar 

  2. S. Xu, Z. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4, 1013 (2011). https://doi.org/10.1007/s12274-011-0160-7

    Article  Google Scholar 

  3. M.R. Alenezi, S.J. Henley, N.G. Emerson, S.R.P. Silva, From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale 6, 235 (2014). https://doi.org/10.1039/c3nr04519f

    Article  ADS  Google Scholar 

  4. W. Cheng, P. Wu, X. Zou, T. Xiao, Study on synthesis and blue emission mechanism of ZnO Tetrapodlike nanostructures. J Appl Phys 100, (2006). https://doi.org/10.1063/1.2338601

    Article  ADS  Google Scholar 

  5. Y.K. Mishra, R. Adelung, ZnO tetrapod materials for functional applications. Mater. Today 21, 631 (2018). https://doi.org/10.1016/j.mattod.2017.11.003

    Article  Google Scholar 

  6. S.N. Fatimah Hasim, M.A. Abdul Hamid, R. Shamsudin, A. Jalar, Synthesis and characterization of ZnO thin films by thermal evaporation. J. Phys. Chem. Solids 70, 1501 (2009). https://doi.org/10.1016/j.jpcs.2009.09.013

    Article  ADS  Google Scholar 

  7. B. Cao, W. Cai, From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions. J. Phys. Chem. C 112, 680 (2007). https://doi.org/10.1021/jp076870l

    Article  Google Scholar 

  8. E.M. Al-Khalqi, M.A. Abdul Hamid, R. Shamsudin, N.H. Al-Hardan, A. Jalar, L.K. Keng, Zinc oxide nanorod electrolyte–insulator–semiconductor sensor for enhanced 2-methoxyethanol selectivity. IEEE Sensors J. 21, 6234 (2021). https://doi.org/10.1109/jsen.2020.3038433

    Article  ADS  Google Scholar 

  9. L.N. Protasova, E.V. Rebrov, K.L. Choy et al., ZnO based nanowires grown by chemical vapour deposition for selective hydrogenation of acetylene alcohols Catal. Sci. Technol. 1, 768 (2011). https://doi.org/10.1039/c1cy00074h

    Article  Google Scholar 

  10. N.H. Al-Hardan, M.A. Abdul Hamid, N.M. Ahmed, R. Shamsudin, N.K. Othman, Ag/ZnO/p-Si/Ag heterojunction and their optoelectronic characteristics under different UV wavelength illumination. Sensors Actuators A: Phys. 242, 50 (2016). https://doi.org/10.1016/j.sna.2016.02.036

    Article  Google Scholar 

  11. Y.W. Heo, V. Varadarajan, M. Kaufman et al., Site-specific growth of ZnO nanorods using catalysis-driven molecular-beam epitaxy. Appl. Phys. Lett. 81, 3046 (2002). https://doi.org/10.1063/1.1512829

    Article  ADS  Google Scholar 

  12. N.H. Al-Hardan, A. Jalar, M.A. Abdul Hamid, L. Kar Keng, R. Shamsudin, Structural and optical properties of a bi-structured ZnO film prepared via electrodeposition. Int. J. Electrochem. Sci. 8, 6767 (2013)

    Google Scholar 

  13. A.B. Djurišić, Y.H. Leung, A.B. Djurisic, Y.H. Leung, Optical properties of ZnO nanostructures. Small 2, 944 (2006). https://doi.org/10.1002/smll.200600134

    Article  Google Scholar 

  14. Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys. Condens. Matter 16, R829 (2004). https://doi.org/10.1088/0953-8984/16/25/r01

    Article  ADS  Google Scholar 

  15. M.R. Alenezi, A.S. Alshammari, K.D.G.I. Jayawardena, M.J. Beliatis, S.J. Henley, S.R.P. Silva, Role of the exposed polar facets in the performance of thermally and UV activated ZnO nanostructured gas sensors. J. Phys. Chem. C 117, 17850 (2013). https://doi.org/10.1021/jp4061895

    Article  Google Scholar 

  16. M.R. Alenezi, A.S. Alshammari, T.H. Alzanki, P. Jarowski, S.J. Henley, S.R.P. Silva, ZnO nanodisk based UV detectors with printed electrodes. Langmuir 30, 3913 (2014). https://doi.org/10.1021/la500143w

    Article  Google Scholar 

  17. Q. Wang, D. Yang, Y. Qiu, X. Zhang, W. Song, L. Hu, Two-dimensional ZnO nanosheets grown on flexible ITO-PET substrate for self-powered energy-harvesting nanodevices. Appl. Phys. Lett. 112, 063906 (2018). https://doi.org/10.1063/1.5012950

    Article  ADS  Google Scholar 

  18. Q. Zhu, J. Lu, Y. Wang, F. Qin, Z. Shi, C. Xu, Burstein-moss effect behind Au surface plasmon enhanced intrinsic emission of ZnO microdisks. Sci. Rep. 6, 36194 (2016). https://doi.org/10.1038/srep36194

    Article  ADS  Google Scholar 

  19. D. Ju, H. Xu, J. Zhang, J. Guo, B. Cao, Direct hydrothermal growth of ZnO nanosheets on electrode for ethanol sensing. Sens. Actuators B Chem. 201, 444 (2014). https://doi.org/10.1016/j.snb.2014.04.072

    Article  Google Scholar 

  20. H. Wu, Q. Fu, Y. Li et al., Controlled growth of uniform two-dimensional ZnO overlayers on Au(111) and surface hydroxylation. Nano Res. 12, 2348 (2019). https://doi.org/10.1007/s12274-019-2373-0

    Article  Google Scholar 

  21. G. Weirum, G. Barcaro, A. Fortunelli et al., Growth and Surface Structure of Zinc Oxide Layers on a Pd(111) Surface. J. Phys. Chem. C 114, 15432 (2010). https://doi.org/10.1021/jp104620n

    Article  Google Scholar 

  22. F. Stavale, L. Pascua, N. Nilius, H.-J. Freund, Morphology and luminescence of ZnO films grown on a Au(111) support. J. Phys. Chem. C 117, 10552 (2013). https://doi.org/10.1021/jp401939x

    Article  Google Scholar 

  23. F. Tumino, C.S. Casari, M. Passoni, C.E. Bottani, A.L. Bassi, Pulsed laser deposition of two-dimensional ZnO nanocrystals on Au(111): growth, surface structure and electronic properties. Nanotechnology 27, 475703 (2016). https://doi.org/10.1088/0957-4484/27/47/475703

    Article  ADS  Google Scholar 

  24. Y. Lee, S. Kim, D. Kim, C. Lee, H. Park, J.-H. Lee, Direct-current flexible piezoelectric nanogenerators based on two-dimensional ZnO nanosheet. Appl. Surf. Sci. 509, 145328 (2020). https://doi.org/10.1016/j.apsusc.2020.145328

    Article  Google Scholar 

  25. J. Zhang, On the piezopotential properties of two-dimensional materials. Nano Energy 58, 568 (2019). https://doi.org/10.1016/j.nanoen.2019.01.086

    Article  Google Scholar 

  26. Q. Zhang, S. Zuo, P. Chen, C. Pan Piezotronics in two-dimensional materials. InfoMat n/a. https://doi.org/10.1002/inf2.12220

  27. V. Kumar, V. Kumar, S. Som et al., Effect of annealing on the structural, morphological and photoluminescence properties of ZnO thin films prepared by spin coating. J. Colloid Interface Sci. 428, 8 (2014). https://doi.org/10.1016/j.jcis.2014.04.035

    Article  ADS  Google Scholar 

  28. Y. Caglar, S. Ilican, M. Caglar et al., Influence of heat treatment on the nanocrystalline structure of ZnO film deposited on p-Si. J. Alloy. Compd. 481, 885 (2009). https://doi.org/10.1016/j.jallcom.2009.03.140

    Article  Google Scholar 

  29. S. Handani, D. Emriadi, S. Arief. Dahlan, Enhanced structural, optical and morphological properties of ZnO thin film using green chemical approach. Vacuum 179, 109513 (2020). https://doi.org/10.1016/j.vacuum.2020.109513

    Article  ADS  Google Scholar 

  30. R. Karmakar, S.K. Neogi, A. Banerjee, S. Bandyopadhyay, Structural; morphological; optical and magnetic properties of Mn doped ferromagnetic ZnO thin film. Appl. Surf. Sci. 263, 671 (2012). https://doi.org/10.1016/j.apsusc.2012.09.133

    Article  ADS  Google Scholar 

  31. N.H. Tran Nguyen, T.H. Nguyen, Y.-R. Liu et al., Thermoelectric properties of indium and gallium dually doped ZnO thin films. ACS Appl. Mater. Interfaces 8, 33916 (2016). https://doi.org/10.1021/acsami.6b10591

    Article  Google Scholar 

  32. E. Sener, O. Bayram, U.C. Hasar, O. Simsek, Structural and optical properties of RF sputtered ZnO thin films: annealing effect. Physica B 605, 412421 (2021). https://doi.org/10.1016/j.physb.2020.412421

    Article  Google Scholar 

  33. L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464 (2003). https://doi.org/10.1002/adma.200390108

    Article  Google Scholar 

  34. R. Al-Gaashani, S. Radiman, A.R. Daud, N. Tabet, Y. Al-Douri, XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 39, 2283 (2013). https://doi.org/10.1016/j.ceramint.2012.08.075

    Article  Google Scholar 

  35. M.N. Abbas, H.S. Magar, Highly sensitive and selective solid-contact calcium sensor based on Schiff base of benzil with 3-aminosalycilic acid covalently attached to polyacrylic acid amide for health care. J. Solid State Electrochem. 22, 181 (2017). https://doi.org/10.1007/s10008-017-3727-8

    Article  Google Scholar 

  36. L. Xu, G. Zheng, J. Miao, F. Xian, Dependence of structural and optical properties of sol–gel derived ZnO thin films on sol concentration. Appl. Surf. Sci. 258, 7760 (2012). https://doi.org/10.1016/j.apsusc.2012.04.137

    Article  ADS  Google Scholar 

  37. R. Bekkari, L. Laânab, D. Boyer, R. Mahiou, B. Jaber, Influence of the sol gel synthesis parameters on the photoluminescence properties of ZnO nanoparticles. Mater. Sci. Semicond. Process. 71, 181 (2017). https://doi.org/10.1016/j.mssp.2017.07.027

    Article  Google Scholar 

  38. T.B. Hur, Y.H. Hwang, H.K. Kim, Quantum confinement in Volmer-Weber-type self-assembled ZnO nanocrystals. Appl. Phys. Lett. 86, 1 (2005). https://doi.org/10.1063/1.1921357

    Article  Google Scholar 

  39. J.C. Nie, J.Y. Yang, Y. Piao et al., Quantum confinement effect in ZnO thin films grown by pulsed laser deposition. Appl. Phys. Lett. 93, 173104 (2008). https://doi.org/10.1063/1.3010376

    Article  ADS  Google Scholar 

  40. Q.P. Wang, D.H. Zhang, Z.Y. Xue, X.T. Hao, Violet luminescence emitted from ZnO films deposited on Si substrate by rf magnetron sputtering. Appl. Surf. Sci. 201, 123 (2002). https://doi.org/10.1016/S0169-4332(02)00570-6

    Article  ADS  Google Scholar 

  41. Z. Tan, D.H.C. Chua, ZnO tip-coated carbon nanotubes core-shell structures for photoluminescence and electron emission properties. J. Electrochem. Soc. 158, K112 (2011). https://doi.org/10.1149/1.3552696

    Article  Google Scholar 

  42. A.B. Djurišić, K.H. Tam, C.K. Cheung et al., Defect in zinc oxide nanostructures synthesized by a hydrothermal method. Nanoscale Phenomena (2007). https://doi.org/10.1007/978-0-387-73048-6_10

    Article  Google Scholar 

  43. K. Pradeev Raj, K. Sadaiyandi, A. Kennedy et al., Influence of Mg doping on ZnO nanoparticles for enhanced photocatalytic evaluation and antibacterial analysis. Nanoscale Res. Lett. 13, 229 (2018). https://doi.org/10.1186/s11671-018-2643-x

    Article  ADS  Google Scholar 

  44. K. Govender, D.S. Boyle, P.B. Kenway, P. O’Brien, Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution. J. Mater. Chem. 14, 2575 (2004). https://doi.org/10.1039/B404784B

    Article  Google Scholar 

  45. V. Strano, R.G. Urso, M. Scuderi et al., Double role of HMTA in ZnO nanorods grown by chemical bath deposition. J. Phys. Chem. C 118, 28189 (2014). https://doi.org/10.1021/jp507496a

    Article  Google Scholar 

  46. M.K. Gupta, J.-H. Lee, K.Y. Lee, S.-W. Kim, Two-dimensional vanadium-doped ZnO nanosheet-based flexible direct current nanogenerator. ACS Nano 7, 8932 (2013). https://doi.org/10.1021/nn403428m

    Article  Google Scholar 

  47. V. Gerbreders, M. Krasovska, E. Sledevskis et al., Hydrothermal synthesis of ZnO nanostructures with controllable morphology change. CrystEngComm 22, 1346 (2020). https://doi.org/10.1039/C9CE01556F

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the School of Physics (USM) for the research assistance and support. The financial support obtained from the CRIM (UKM) and RCMO (USM) via the short-term research grants GGPM 2020-047 and 304/PFIZIK/6315514 is highly appreciated.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. These authors NHAH and NMA contributed equally.

Corresponding author

Correspondence to Naif H. Al-Hardan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25075 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hardan, N.H., Ahmed, N.M., Almessiere, M.A. et al. Effect of sulphuric acid (H2SO4) on the growth process of two-dimensional zinc oxide (ZnO) structures prepared by chemical bath deposition. Appl. Phys. A 127, 701 (2021). https://doi.org/10.1007/s00339-021-04861-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04861-7

Keywords

Navigation