Skip to main content
Log in

Effect of Cd dopant on structural, optical and CO2 gas sensing properties of ZnO thin film sensors fabricated by chemical bath deposition method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cadmium-doped zinc oxide (Cd-doped ZnO) films were produced by economic facile chemical bath deposition method. The Cd doping content was adjusted as 1%, 3%, 5% and 7%. The structural, morphological and optical properties of the films were characterized by XRD, Raman, SEM and UV–Vis. The response in a carbon dioxide atmosphere was measured by varying the concentration up to 100 ppm at different working temperatures (30–250 °C). XRD measurements demonstrated that all synthesized films have a good crystallite structure with hexagonal wurtzite dominant phase. A large variety of nanostructures are randomly distributed over the films’ surfaces depending on Cd doping content as was manifested by the corresponding SEM images. From the transmittance analysis, an ultraviolet absorption edge corresponding to pure ZnO film undergoes a redshift with the increase in Cd content. The results from Raman spectra are in good agreement with the XRD results. From the gas sensing measurements, a high response toward 100 ppm CO2 gas was detected by 3% Cd-doped ZnO sensor (88.24% at 125 °C) with an acceptable response of 8.36% at room temperature, which exhibited the lowest response/recovery times as well as highest selectivity, stability and reproducibility. Changes in the CO2 gas sensing response as a function of Cd doping content are explained based on particle size, optical bandgap and surface images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. G.A. Florides, P. Christodoulides, Environ. Int. 35, 390–401 (2009)

    Google Scholar 

  2. M. Amarnath, K. Gurunathan, J. Alloys Compd. 857, 157584 (2021)

    Google Scholar 

  3. C. Le Quéré, G.P. Peters, P. Friedlingstein, R.M. Andrew, J.G. Canadell, S.J. Davis, R.B. Jackson, M.W. Jone, Nat. Clim. Chang. 11, 197–199 (2021)

    ADS  Google Scholar 

  4. S. Neethirajan, M.S. Freund, D.S. Jayas, C. Shafai, D.J. Thomson, N.D.G. , White Biosyst. Eng. 106, 395–404 (2010)

    Google Scholar 

  5. N. Barsan, D. Koziej, U. Weimar, Sens. Actuators B 121, 18–35 (2007)

    Google Scholar 

  6. G. Lei, C. Lou, X. Liu, J. Xie, Z. Li, W. Zheng, J. Zhang, Sens. Actuators B 341, 129996q (2021)

    Google Scholar 

  7. B. Salah, A.I. Ayesh, Mater. Chem. Phys 266, 124597 (2021)

    Google Scholar 

  8. M. Sun, S. Zhang, Z. Zhang, H. Zhang, Y. Wang, X. Jing, X. Song, J Mater Sci 56, 11801–11813 (2021)

    ADS  Google Scholar 

  9. Z. Zhang, M haq, Z Wen, Z Ye, L Liping Zhu, , Appl. Surf. Sci. 434, 891–897 (2018)

    ADS  Google Scholar 

  10. D Yang, RA Gopal, Y Lee, S Kim, H Jeon, V E Sathishkumar, A M Al-Mohaimeed, W A Al-onazi, T saad Algarni, D Choi, (2021) J. King. Saud. Univ. Sci. 33(3): 101397

  11. M.K. Roul, S.K. Pradhan, K.D. Song, M.J. Bahoura, J Mater Sci 54, 7062–7071 (2019)

    ADS  Google Scholar 

  12. F. Sarf, I. Karaduman Er, E. Yakar, S. Acar, J. Mater. Sci.: Mater. Electron. 31, 10084–10095 (2020)

    Google Scholar 

  13. M. Habib, S.S. Hussain, S. Riaz, S. Naseem, Mater. Today: Proceed. 2, 5714–5719 (2015)

    Google Scholar 

  14. S. Pati, P. Banerji, S.B. Majumder, Sens. Actuators A 213, 52–58 (2014)

    Google Scholar 

  15. S. Vallejos, F. Di Maggio, T. Shujah, C. Blackman, Chemosensors 4, 4 (2016)

    Google Scholar 

  16. IKaraduman Er, İA Yıldız, T Bayraktar, S Acar, A Ates, (2021) J. Mater. Sci: Mater. Electron. 32: 8122-8135

  17. P.V. Morais, P.H. Suman, R.A. Silva, M.O. Orlandi, J. Alloys Compd. 864, 158745 (2021)

    Google Scholar 

  18. M.F. Nurfazliana, M.Z. Sahdan, H. Saim, AIP Conf. Proceed. 1788, 030091 (2017)

    Google Scholar 

  19. H.A. Varudkar, G. Umadevi, P. Nagaraju, J.S. Dargad, V.D. Mote, J Mater Sci: Mater Electron 31, 12579–12585 (2020)

    Google Scholar 

  20. TVKKarthik, M Luz Olvera De La, A Maldonado, RR Biswal, H Gómez-Pozos, (2020) Sensors 20: 6879

  21. KRadhi Devi, G Selvan, M Karunakaran, K Kasirajan, L Bruno Chandrasekar, Mohd Shkir, S AlFaify, (2020) J. Mater. Sci: Mater. Electron. 31: 10186-10195

  22. I Karaduman Er, (2021) Res. Eng. Struct. Mater https://doi.org/10.17515/resm2020.212ma0901

  23. M.A. Basyooni, M. Shaban, M.A. El Sayed, Sci. Reports. 7, 41716 (2017)

    ADS  Google Scholar 

  24. S.E. Zaki, M.A. Basyooni, M. Shaban, M. Rabia, Y.R. Eker, G.F. Attia, M. Yılmaz, A.M. Ahmed, Sens. Actuators A 294, 17–24 (2019)

    Google Scholar 

  25. D. Mardare, N. Cornei, C. Mita, D. Florea, A. Stancu, V. Tirona, A. Manole, C. Adomnitei Ceram. Int. 42, 7353–7359 (2016)

    Google Scholar 

  26. I. Karaduman Er, M.A. Yıldırım, H.H. Örkçü, A. Ateş, S. Acar, Appl. Phys. A 127(4), 230 (2021)

    ADS  Google Scholar 

  27. F. Ozutok, I. Karaduman, S. Demiri, S. Acar, J. Elec. Mater. 47, 2648–2657 (2018)

    Google Scholar 

  28. IKaraduman Er, T Nurtayeva, M Sbeta, AO Cagirtekin, S Acar, A Yildiz, (2019) J. Mater. Sci: Mater. Electron. 30: 10560-10570

  29. F. Zahedi, R.S. Dariani, S.M. Rozati, Bull. Mater. Sci. 37(3), 433–439 (2014)

    Google Scholar 

  30. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Mater. Res. Bull. 95, 123–128 (2017)

    Google Scholar 

  31. S.D. Senol, E. Ozugurlu, L. Arda, Ceram. Inter. 46(6), 7033–7044 (2020)

    Google Scholar 

  32. M. Mujahıd, Bull. Mater. Sci. 38(4), 995–1001 (2015)

    Google Scholar 

  33. K. Ravichandran, K. Saravanakumar, R. Chandramohan, V Nandhakumar Appl. Surf. Sci. 261, 405–410 (2012)

    ADS  Google Scholar 

  34. N. Rana, S. Chand, K.A. Gathania, Ceram. Inter. 41(9), 12032–12037 (2015)

    Google Scholar 

  35. AJ Najim, JM Rozaiq, (2013) Int. Lett. Chem, Phys Astr 15: 137-150 https://doi.org/10.18052/www.scipress.com/ILCPA.15.137

  36. M. Sathya, K. Pushpanathan, Appl. Surf. Sci. 449, 346–357 (2018)

    ADS  Google Scholar 

  37. R. Mariappan, V. Ponnuswamy, A. Chandra Bose, A. Chithambararaj, R. Suresh, M. Ragavendar, Superlattices Microstruct. 65, 184–94 (2014)

    ADS  Google Scholar 

  38. G. Srinivasan, R.T. Rajendra Kumar, J. Kumar, (2007) J. Sol-Gel. Sci. Technol. 43: 171

  39. Ö. Bilgili, J. Baun Inst. Sci. Technol. 23(1), 50–64 (2021)

    MathSciNet  Google Scholar 

  40. S. Kurajica, V. Mandić, G. Matijašić, I.K. Munda, K. Mužina, Sci Eng Compos Mater 26, 482–490 (2019)

    Google Scholar 

  41. J. Zhang, S.-Q. Zhao, K. Zhang, J.-Q. Zhou, Y.-F. Cai, Nanoscale Res Lett 7, 405 (2012)

    ADS  Google Scholar 

  42. U. N. Maiti, P. K. Ghosh, Sk. F. Amed, M. K. Mitra, K. K. Chattopadhyay, (2007) J. Sol-Gel Sci Techn. 41: 87–92

  43. A.D. Acharya, S. Moghe, R. Panda, S.B. Shrivastava, M. Gangrade, T. Shripathi, D.M. Phase, V. Ganesan, Thin Solid Films 525, 49–55 (2012)

    ADS  Google Scholar 

  44. K. Shan, G.X. Liu, W.J. Lee, B.C. Shin, J. Cryst. Growth 291, 328 (2006). https://doi.org/10.1016/j.jcrysgro.2006.03.036

    Article  ADS  Google Scholar 

  45. X.D. Zhang, M.L. Guo, W.X. Li, C.L. Liu, J. Appl. Phys. 103, 063721 (2008). https://doi.org/10.1063/1.2901033

    Article  ADS  Google Scholar 

  46. F. Yakuphanoglu, S. Ilican, M. Caglar, Y. Caglar, Superlattices Microstruct. 47(6), 732–743 (2010)

    ADS  Google Scholar 

  47. K. Ravichandran, A. Manivasaham, J. Mater. Sci: Mater. Electron. 28, 6335–6344 (2017)

    Google Scholar 

  48. F. Naccarato, F. Ricci, J. Suntivich, G. Hautier, L. Wirtz, G.-M. Rignanese, Phys. Rev. Materials 3, 044602 (2019)

    ADS  Google Scholar 

  49. E. Asikuzun, A. Donmez, L. Arda, O. Cakiroglu, O. Ozturk, D. Akcan, M. Tosun, S. Ataoglu, C. Terzioglu Ceramic Inter. 41, 6326 (2015)

    Google Scholar 

  50. E. Asikuzun, O. Ozturk, L. Arda, C. Terzioglu, J. Mater. Sci. Mater. Electron. 28, 14314 (2017)

    Google Scholar 

  51. Z.K. Heiba, L. Arda, M.B. Mohamed, M.A. Al-Jalali, N. Dogan J. Supercond Nov. Magn 26, 3299 (2013)

    Google Scholar 

  52. N. Üzar, G. Algün, N. Akçay, D. Akcan, L. Arda, J. Mater. Sci. Mater. Electron. 28, 11861–70 (2017)

    Google Scholar 

  53. P.A. Rodnyi, I.V. Khodyuk, Opt. Spectrosc. 111, 776–785 (2011)

    ADS  Google Scholar 

  54. D. A. Guzman-Embus, M. F. Vargas-Charry, C. Vargas-Hern Vandez, (2015) J. Am. Ceram. Soc. 98(5): 1498–1505

  55. R.A. Zargar, P.A. Ahmad, M.A. Sheer Gogre, M.M. Hassan, Opt. Quantum Electron. 52, 401 (2020)

    Google Scholar 

  56. B. Rahal, B. Boudine, A.R. Khantoul, M. Sebais, O. Halimi, Optik 127, 6943–6951 (2016)

    ADS  Google Scholar 

  57. N. Rana, S. Chand, A.K. Gathania, Ceram. Intern. 41(9-B), 12032–12037 (2015)

    Google Scholar 

  58. W. Bi, W. Xiao, S. Liu, J Mater Sci 56, 6095–6109 (2021)

    ADS  Google Scholar 

  59. G. Biasotto, M.G.A. Ranieri, C. Foschini, A.Z. Simões, E. Longo, M.A. Zaghete, Ceram. Int. 40(9), 14991–14996 (2014)

    Google Scholar 

  60. A. Sholehah, K. Karmala, N. Huda, L. Utari, N. L. Wulan Septiani, B. Yuliarto, (2021) Sens. Actuators A 331: 112934

  61. X. Zhou, A. Wang, Y. Wang, L. Bian, Z. Yang, Y. Bian, Y. Gong, X. Wu, N. Han, Y. Chen, ACS Sens. 3, 2385–2393 (2018)

    Google Scholar 

  62. P. Gyu Choi, T. Fuchigami, K.-i. Kakimoto, Y. Masuda, (2020) ACS Sens. 5: 1665−1673

  63. M. Gancarz, U. Malaga-Toboła, A. Oniszczuk, S. Tabor, T. Oniszczuk, M. Gawrysiak-Witulska, R. Rusinek, Food Bioprod. Process. 127, 90–98 (2021)

    Google Scholar 

  64. B. Liu, H. Yu, X. Zeng, D. Zhang, J. Gong, L. Tian, J. Qian, L. Zhao, S. Zhang, R. Liu, Sens. Actuators: B 339, 129896 (2021)

    Google Scholar 

  65. C. Zhu, K. Huang, F. Yuan, C. Xıe, Mater. Sci.-Pol. 32(2), 181–187 (2014). https://doi.org/10.2478/s13536-013-0168-7

    Article  ADS  Google Scholar 

  66. T. Thomas, Y. Kumar, J. Alberto, R. Ramón, V. Agarwal, S. Sepúlveda Guzmán, R. Reshmi, S. Pushpan, S. Lugo Loredo, K.C. San al, (2021) Vacuum. 184: 109983

  67. I. Karaduman Er, I. A. Yıldız, T. Bayraktar, S. Acar, A. Ates¸ (2021). J Mater Sci: Mater Electron 32: 8122–8135

  68. F. Panto, S.G. Leonardi, E. Fazio, P. Frontera, A. Bonavita, G. Neri, P. Antonucci, F. Neri, S. Santangelo, Nanotechnology 29, 305501 (2018)

    Google Scholar 

  69. R. Zhao, J Phys Chem Solids 112, 43–49 (2018)

    ADS  Google Scholar 

  70. M. Amarnath, K. Gurunathan, J. Alloys Compd. 857, 157584 (2021)

    Google Scholar 

  71. A. Ghosh, C. Zhang, H. Zhang, S. Shi, Langmuir 35, 10267–10275 (2019)

    Google Scholar 

  72. Y.M. Hunge, A.A. Yadav, S.B. Kulkarni, V.L. Mathe, Sensor. Actuator. B Chem. 274, 1–9 (2018)

    Google Scholar 

  73. A.A. Yadav, A.C. Lokhande, J.H. Kim, C.D. Lokhande, J. Alloys Compd. 723, 880–886 (2017)

    Google Scholar 

  74. P. Matheswaran, R. Sathyamoorthy, K. Asokan, Sensor. Actuator. B Chem. 177(8), 13 (2013)

    Google Scholar 

  75. N. Zouadi, S. Messaci, S. Sam, D. Bradai, N. Gabouze, Mater. Sci. Semicond. Process. 29, 367–371 (2015)

    Google Scholar 

  76. S. Agarwal, P. Rai, E. Navarrete Gatell, E. Llobet, F. Guelle, M. Kumara, K. Awasth, (2019). Sens. Actuators B Chem. 292: 24–31

  77. S Roso, F Guell, PR Martı´nez-alanis, A Urakawa, E Llobet, (2016) Sens. Actuators. B Chem. 230: 109-114 https://doi.org/10.1016/j.snb.2016.02.048

  78. M. Habib, S.S. Hussain, S. Riaz, S. Naseem, Mater. Today: Proc. 2, 5714–5719 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Gazi University Scientific Research Fund [project code BAP 18/2020-01].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irmak Karaduman Er.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altun, B., Karaduman Er, I., Çağırtekin, A.O. et al. Effect of Cd dopant on structural, optical and CO2 gas sensing properties of ZnO thin film sensors fabricated by chemical bath deposition method. Appl. Phys. A 127, 687 (2021). https://doi.org/10.1007/s00339-021-04843-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04843-9

Keywords

Navigation