Skip to main content
Log in

The role of doping and heating rate in optimizing the crystallization parameters of As35Se65-xSbx glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 03 September 2021

This article has been updated

Abstract

The present study reports the investigations of the pre-crystallization and amorphous-crystalline transformation kinetics of As35Se65-xSbx (0, 2 and 6 at. %) glasses. It was found that the Sb content controls many features of As35Se65-xSbx where it caused an increase in the glass transition from 409 to 416 K and a decrease in crystallization temperature from 626 to 607 K at heating rate 10 K/min−1 as an example, indicating the effect of Sb doping on the structure matrix of As35Se65-xSbx. The thermal stability parameters of As35Se65-xSbx glasses were increased from 172 to 174 K with increasing the Sb content from 2 to 6 at.%. In addition, the transition activation energy of the glass was evaluated with different methods, and it was found that it depends on the Sb amount as well as conversion fraction. The crystallization kinetics parameters, determined with iso-conversional methods, also were controlled by changing the composition. Both Sestak–Berggren (SB) and Johnson–Mehl–Avrami (JMA) models were applied for investigating the crystallization kinetics of As35Se65-xSbx glasses. Also, the theoretical results were compared with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9
Fig. 10
Fig. 11

Similar content being viewed by others

Change history

References

  1. B. Ye, S. Dai, R. Wang, G. Tao, P. Zhang, X. Wang, X. Shen, Influence of the selenium content on thermo-mechanical and optical properties of Ge–Ga–Sb–S chalcogenide glasses. Infrared Phys. Technol. 77, 21–26 (2016)

    Article  ADS  Google Scholar 

  2. E. Shaaban, M. Hassaan, M. Moustafa, A. Qasem, Sheet resistance–temperature dependence, thermal and electrical analysis of As 40 S 60–x Se x thin films. Appl. Phys. A 126, 1–10 (2020)

    Article  Google Scholar 

  3. P. Bavafa, M. Rezvani, M. Rezazadeh, A. Rahimian, M. Ghayebloo, Fabrication and investigation of Se-Ge Glass-ceramics in the presence of Ga and Sn additives. Adv. Ceram. Progress 5, 7–11 (2019)

    Google Scholar 

  4. E. Shaaban, I. Tomsah, The effect of Sb content on glass-forming ability, the thermal stability, and crystallization of Ge–Se chalcogenide glass. J. Therm. Anal. Calorim. 105, 191–198 (2011)

    Article  Google Scholar 

  5. E.R. Shaaban, Non-isothermal crystallization kinetic studies on a ternary, Sb0. 14As0. 38Se0. 48 chalcogenide semi-conducting glass. Physica B: Condens. Matter 373(2), 211–216 (2006)

    Article  ADS  Google Scholar 

  6. P.T. Wilson, R. Ramanna, S. Chahal, R. Shekhawat, M.M. Kumar, K. Ramesh, Local structure and electrical switching in Al20Te75X5 (X = Si, Ge, As, Sb) glasses. Appl. Phys. A 126, 289 (2020)

    Article  ADS  Google Scholar 

  7. M. Mohamed, E. Shaaban, M.N. Abd-el Salam, A. Abdel-Latief, S.A. Mahmoud, M. Abdel-Rahim, Investigation of the optical and electrical parameters of As47. 5Se47. 5Ag5 thin films with different thicknesses for optoelectronic applications. Optik 178, 1302–1312 (2019)

    Article  ADS  Google Scholar 

  8. E.R. Shaaban, M. Mohamed, M.N. Abd-el Salam, A.Y. Abdel-Latief, M.A. Abdel-Rahim, E.S. Yousef, Structural, linear and non-linear optical properties of annealed As47 5Se47 5Ag5 thin films for optoelectronic applications. Optical Mater. 86, 318–325 (2018)

    Article  ADS  Google Scholar 

  9. M. Mohamed, A.Y. Abdel-Latief, M.A. Abdel-Rahim, N.M.A. Hadia, E.R. Shaaban, M.N. Abd-el Salam, Examination of the kinetic reaction mechanisms of amorphous As50Se50 chalcogenide glass. Appl. Phys. A 124(8), 562 (2018)

    Article  ADS  Google Scholar 

  10. F. Baino, E. Fiume, Quantifying the effect of particle size on the crystallization of 45S5 bioactive glass. Mater. Lett. 224, 54–58 (2018)

    Article  Google Scholar 

  11. E. Shaaban, I. Yahia, M. Fadel, Effect of composition on the thermal stability for Ge–In–Se intermediate compound. J. Alloy. Compd. 469, 427–432 (2009)

    Article  Google Scholar 

  12. K. Hu, F. Teng, L. Zheng, P. Yu, Z. Zhang, H. Chen, X. Fang, Binary response Se/ZnO p-n heterojunction UV photodetector with high on/off ratio and fast speed. Laser Photonics Rev. 11, 1600257 (2017)

    Article  ADS  Google Scholar 

  13. A. Rogalski, Infrared detectors: an overview. Infrared Phys. Technol. 43, 187–210 (2002)

    Article  ADS  Google Scholar 

  14. J.A. Caballero, J.A. Conesa, Mathematical considerations for nonisothermal kinetics in thermal decomposition. J. Anal. Appl. Pyrol. 73, 85–100 (2005)

    Article  Google Scholar 

  15. P. Rajeshwari, T. Dey, Advanced isoconversional and master plot analyses on non-isothermal degradation kinetics of AlN (nano)-reinforced HDPE composites. J. Therm. Anal. Calorim. 125, 369–386 (2016)

    Article  Google Scholar 

  16. I.M.S. Mohammed, G.M.M. Gubari, M.E. Sonawane, R.R. Kasar, S.A. Patil, M.K. Mishra, V.V. Kutwade, R. Sharma, Influence of pH on the physical properties of CdS thin film and its photosensor application. Appl. Phys. A 127, 597 (2021)

    Article  ADS  Google Scholar 

  17. M.J. Starink, Analysis of aluminium based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics. Int. Mater. Rev. 49, 191–226 (2004)

    Article  Google Scholar 

  18. A.A. Joraid, Estimating the activation energy for the non-isothermal crystallization of an amorphous Sb9 1Te20 1Se70 8 alloy. Thermochimica Acta 456(1), 61–6 (2007)

    Article  Google Scholar 

  19. M.N. Abd-el Salam, M. Mohamed, E.R. Shaaban, M.A. Abdel-Rahim, A.Y. Abdel-Latief, The crystallization kinetics studies of the two crystallization stages of As37.5Se37.5Ag25 glass using the model-fitting and model-free approaches. Chin. J. Phy. 60, 35–47 (2019)

    Article  Google Scholar 

  20. T. Ozawa, A new method of analyzing thermo-gravimetric data. Bull. Chem. Soc. Japan 38, 188–1886 (1965)

    Article  Google Scholar 

  21. J.H. Flynn, L.A. Wall, A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. Part C: Polym. Lett. 4, 323–328 (1966)

    Google Scholar 

  22. H.L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. C 6, 183–195 (1964)

    Article  Google Scholar 

  23. M. Starink, The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim. Acta 404, 163–176 (2003)

    Article  Google Scholar 

  24. H.E. Kissinger, Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706 (1957)

    Article  Google Scholar 

  25. T. Akahira, T. Sunose, Method of determining activation deterioration constant of electrical insulating materials. Res. Rep. Chiba. Inst. Technol. (Sci Technol) 16, 22–31 (1971)

    Google Scholar 

  26. S. Vyazovkin, D. Dollimore, Linear and nonlinear procedures in isoconversional computations of the activation energy of nonisothermal reactions in solids. J. Chem. Inf. Comput. Sci. 36, 42–45 (1996)

    Article  Google Scholar 

  27. S. Vyazovkin, Modification of the integral isoconversional method to account for variation in the activation energy. J. Comput. Chem. 22, 178–183 (2001)

    Article  Google Scholar 

  28. S.A. Khan, M. Zulfequar, M. Husain, On the crystallization kinetics of amorphous Se80In20− xPbx. Solid State Commun. 123(10), 463–468 (2002)

    Article  ADS  Google Scholar 

  29. A. Dahshan, K. Aly, Characterization of new quaternary chalcogenide As–Ge–Se–Sb thin films. Phil. Mag. 88, 361–372 (2008)

    Article  ADS  Google Scholar 

  30. P.K. Jain, N.S. Deepika, Saxena, Glass transition, thermal stability and glass-forming ability of Se90In10− x Sb x (x = 0, 2, 4, 6, 8, 10) chalcogenide glasses. Phil. Mag. 89, 641–650 (2009)

    Article  ADS  Google Scholar 

  31. M.K. Rabinal, K.S. Sangunmi, E.S.R. Copal, Chemical ordering in Ge20Se80−xInx lasses. J. Non Cryst. Solids. 188(1–2), 98–106 (1995)

    Article  ADS  Google Scholar 

  32. E. Shaaban, M. Kaid, A. Adel, Effect of compositional variations on the optical properties of Sb–Ge–Se thin films. J. Phys. D: Appl. Phys. 41(2), 125301 (2008)

    Article  ADS  Google Scholar 

  33. M. Mohamed, M.N. Abd-el Salam, M. Abdel-Rahim, A. Abdel-Latief, E. Shaaban, Effect of Ag addition on crystallization kinetics and thermal stability of As–Se chalcogenide glasses. J. Thermal Anal. Calorimetry 132(1), 91–101 (2018)

    Article  Google Scholar 

  34. A. Dietzel, Glass structure and glass properties. Glasstech 22, 41–49 (1968)

    Google Scholar 

  35. M. Rabinal, K. Sangunni, E. Gopal, Chemical ordering in Ge20Se80− χInχ glasses. J. Non-Cryst. Solids 188, 98–106 (1995)

    Article  ADS  Google Scholar 

  36. A. Hrubý, Evaluation of glass-forming tendency by means of DTA. Czechoslovak J. Phys. B 22, 1187–1193 (1972)

    Article  ADS  Google Scholar 

  37. M. Saad, M. Poulain, Glass forming ability criterion. Mater. Sci. Forum. 19, 11–18 (1987)

    Article  Google Scholar 

  38. M.J. Starink, Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral. J. Mater. Sci. 42, 483–489 (2007)

    Article  ADS  Google Scholar 

  39. J.H. Flynn, L.A. Wall, Adirect method for the determination of activation energy from thermo-gravimetric data. Polym. Lett. 4, 323–328 (1966)

    Article  Google Scholar 

  40. W. Tang, Y. Liu, H. Zhang, C. Wang, New approximate formula for Arrhenius temperature integral. Thermochim. Acta 408, 39–43 (2003)

    Article  Google Scholar 

  41. M.A. DeBolt, A.J. Easteal, P.B. MACEDO, C.T. Moynihan, , Analysis of structural relaxation in glass using rate heating data. J Am. Ceram. Soc. 59(1–2), 16–21 (1976)

    Article  Google Scholar 

  42. C.T. Moynihan, A.J. Easteal, J. Wilder, J. Tucker, Dependence of the glass transition temperature on heating and cooling rate. J. Phys. Chem. 78, 2673–2677 (1974)

    Article  Google Scholar 

  43. G. Ruitenberg, Applying Kissinger analysis to the glass transition peak in amorphous metals. Thermochim. Acta 404, 207–211 (2003)

    Article  Google Scholar 

  44. H.E. Kissinger, Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Bur. Stand. 57, 217–221 (1956)

    Article  Google Scholar 

  45. M. Wakkad, E.K. Shokr, S. Mohamed, Optical and calorimetric studies of Ge–Sb–Se glasses. J. Non-Cryst. Solids 265, 157–166 (2000)

    Article  ADS  Google Scholar 

  46. N. Mehta, R. Tiwari, A. Kumar, Glass forming ability and thermal stability of some Se–Sb glassy alloys. Mater. Res. Bull. 41, 1664–1672 (2006)

    Article  Google Scholar 

  47. S. Mahadevan, A. Giridhar, A.K. Singh, Calorimetric measurements on As-Sb - Se glasses. J. Non-Cryst. Solids 88, 11–34 (1986)

    Article  ADS  Google Scholar 

  48. S. Vyazovkin, N. Sbirrazzuoli, Estimating the activation energy for non-isothermal crystallization of polymer melts. J. Therm. Anal. Calorim. 72, 681–686 (2003)

    Article  Google Scholar 

  49. A. Khawam, D.R. Flanagan, Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Nonisothermal kinetic studies, Thermochimica Acta 436, 101–112 (2005)

    Article  Google Scholar 

  50. F. Liu, S. Song, J. Xu, J. Wang, Determination of nucleation and growth modes from evaluation of transformed fraction in solid-state transformation. Acta Mater. 56, 6003–6012 (2008)

    Article  ADS  Google Scholar 

  51. S.P. Das, Mode-coupling theory and the glass transition in supercooled liquids. Rev. Mod. Phys. 76, 785 (2004)

    Article  ADS  Google Scholar 

  52. F. Stickel, E.W. Fischer, R. Richert, Dynamics of glass-forming liquids I. Temperature-derivative analysis of dielectric relaxation data. J. chem. Phys. 102(15), 6251–6257 (1995)

    Article  ADS  Google Scholar 

  53. W. Kob, The Mode-Coupling Theory of the Glass Transition, In (ACS Publications, 1997)

    Book  Google Scholar 

  54. M.L. Williams, R.F. Landel, J.D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955)

    Article  Google Scholar 

  55. M. Abdel-Rahim, M.A. Hammam, A. Abu-Sehly, M. Hafiz, Composition effect on the pre-crystallization and crystallization characteristics for Se90-xTe10Agx. J. Alloy. Compd. 728, 1346–1361 (2017)

    Article  Google Scholar 

  56. K. Matusita, T. Komatsu, R. Yokota, Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J. Mater. Sci. 19, 291–296 (1984)

    Article  ADS  Google Scholar 

  57. K. Matusita, S. Sakka, Kinetic study of the crystallization of glass by differential scanning calorimetry. Phys. Chem. Glasses 20, 81 (1979)

    Google Scholar 

  58. K. Matusita, S. Saka, Kinetic study of crystallization of glass by differential thermal analysis—criterion on application of Kissinger plot. J Non-Cryst. Solids 38–39, 741–746 (1980)

    Article  ADS  Google Scholar 

  59. J. Colmenero, J. Barandiaran, Crystallization of Al23Te77 glasses. J. Non-Cryst. Solids 30, 263–271 (1979)

    Article  ADS  Google Scholar 

  60. M.A. Abdel-Rahim, M.M. Hafiz, A.Z. Mahmoud, Crystallization kinetics and thermal stability in Se85-xTe15Sbx chalcogenide glasses. Phase Transitions 89, 1029–1042 (2016)

    Article  Google Scholar 

  61. K. Tanka, Structural phase transitions in chalcogenide glasses. Phys. Rev. B 39, 1270–1279 (1989)

    Article  ADS  Google Scholar 

  62. P. Duhan, D. Baranock, A. ondrejka, The study of transformation kinetics of the amorphous Pd-Si alloys. J. Non-Cryst. Solids 21(3), 1411–428 (1976)

    Google Scholar 

  63. J.M. Cai, L.S. Bi, Kinetic analysis of wheat straw pyrolysis using isoconversional methods. J. Therm. Anal. Calorim. 98, 325–330 (2009)

    Article  Google Scholar 

  64. J. Málek, E C̆ernošková, R Svejka, J Sestak, G Van der Plaats, , Crystallization kinetics of Ge0 3Sb1 4S2 7 glass. Thermochimica. Acta. 280, 35–361 (1996)

    Google Scholar 

  65. M. Abdel-Rahim, A. Abdel-Latief, M.N. Abd-el Salam, Kinetic analysis of crystallization process of Se-In-Pb glasses—Isoconversion method. Thermochimica acta 573, 57–64 (2013)

    Article  Google Scholar 

  66. S. Vyazovkin, A.K. Burnham, J.M. Criado, Pe´rez-Maqueda LA, Popescu C, S N, , ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520(1–2), 1–19 (2011)

    Article  Google Scholar 

  67. S. Vyazovkin, W. Linert, Kinetic analysis of reversible thermal decomposition of solids. Int. J. Chem. Kinet. 27, 73–84 (1995)

    Article  Google Scholar 

  68. J. Malek, The applicability of Johnson–Mehl–Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim. Acta 267, 61–73 (1995)

    Article  Google Scholar 

  69. J. Malek, Kinetic analysis of non-isothermal calorimetric data. Sci. Papers Univ. Pardubice 2, 177–209 (1996)

    Google Scholar 

  70. P. Pustková, D. Švadlák, J. Shánělová, J. Málek, The non-isothermal crystallization kinetics of Sb2 S3 in the (GeS2)0.2 (Sb2 S3)0.8 glass. Thermochimica acta 445(2), 116–120 (2006)

    Article  Google Scholar 

  71. M.A. Abdel-Rahim, M.M. Hafiz, A.Z. Mahmoud, Crystallization kinetics of overlapping phases in Se70Te15Sb15 using isoconversional methods. Progress in Natural Sci: Mater Int 25, 169–177 (2015)

    Article  Google Scholar 

  72. M.A.A. Rahim, A.Y.A. Latief, A. El-Korashy, M.A. Sabet, Kinetic analysis of crystallization process in amorphous Se90-xTe10Pbx glasses. Mater. Trans 51(3), 428–433 (2010)

    Article  Google Scholar 

  73. D.W. Henderson, Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. J. Non-Cryst. Solids 30, 301–315 (1979)

    Article  ADS  Google Scholar 

  74. A.A. Joraid, Limitation of the Johnson–Mehl–Avrami (JMA) formula for kinetic analysis of the crystallization of a chalcogenide glass. Thermochim. Acta 436, 78–82 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salam, M.N.Ae., Shaaban, E.R. & Mohamed, M. The role of doping and heating rate in optimizing the crystallization parameters of As35Se65-xSbx glasses. Appl. Phys. A 127, 694 (2021). https://doi.org/10.1007/s00339-021-04816-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04816-y

Keywords

Navigation