Skip to main content
Log in

Morphology, structure and thermal analysis of (As50Se50)100−xAgx glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The structural and crystallization kinetics of (As50Se50)100−xAgx (x = 0, 5, 10 and 15 at.%) glasses are reported. The glass transition activation energy, Et, decreased from 185.19 to 179.94 eV with increasing the Ag content. The crystalline phases AsSe, AgAsSe2 and Ag2Se phases were found in the annealed glasses. The structure of the annealed samples at different temperatures was examined using scanning electron microscopy. The crystallization kinetics parameters were calculated using the iso-conversional models. A slight increase in Ec(χ) from with the conversion (χ), which accounts for single-step mechanism, was found. The results of the conversion dependence of the Avrami exponent n(χ) showed an increase from 1.22 to 1.31 with the Ag content and conversion (χ) as well. The average values of n(χ) are accounted for two- and three-dimensional crystal growth with heterogeneous nucleation. Comparing the experimental DSC data with calculated ones indicated that Sestak–Berggren model was found to be suitable for describing the crystallization process of the investigated chalcogenide glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Z. Mahmoud, M. Mohamed, S. Moustafa, A.M. Abdelraheem, M.A. Abdel-Rahim, Study of non-isothermal crystallization kinetics of Ge20Se70Sn10 chalcogenide glass. J. Therm. Anal. Calorimet. 131, 2433 (2018)

    Google Scholar 

  2. J. Zheng, H. Yin, L. Li, Y. Wang, J. Wei, G. Chen, Effects of Ag additive on structure and crystallization behaviors of As2(Se15Te85)3 glasses. Ceram. Int. 43, 15027–15033 (2017)

    Google Scholar 

  3. Y. Liu, C. Chen, Y. Zhou, R. Kondrotas, J. Tang, Butyldithiocarbamate acid solution processing: its fundamentals and applications in chalcogenide thin film solar cells. J. Mater. Chem. C 7, 11068–11084 (2019)

    Google Scholar 

  4. E. Shaaban, Non-isothermal crystallization kinetic studies on a ternary, Sb0.14 As0.38 Se0.48 chalcogenide semi-conducting glass. Phys. B Condens. Matter 373, 211–216 (2006)

    ADS  Google Scholar 

  5. A. Inoue, A. Takeuchi, Recent progress in bulk glassy, nanoquasicrystalline and nanocrystalline alloys. Mater. Sci. Eng. A 375–377, 16–30 (2004)

    Google Scholar 

  6. J.L. Cárdenas-Leal, J. Vázquez, D. García-G, R. Barreda, P.L. González-Palma, P.V. López-Alemany, Analysis of the glass–crystal transformation kinetics by means of the theoretical method developed (TMD) under both non-isothermal and isothermal regimes. Application to the crystallization of the Ag0.16As0.34Se0.50 glassy alloy. J. Alloys Compd. 622, 610–617 (2015)

    Google Scholar 

  7. N. Nedelcu, Applications of the chalcogeide ternary thin films. Roman. J. Mech. 4, 47–64 (2019)

    Google Scholar 

  8. D. Zhao, X.H. Zhang, F. Xia, H. Wang, H.L. Ma, J.L. Adam, G. Chen, Nonisothermal study on crystallization kinetics of GeSe2–As2Se3–CdSe chalcogenide glasses by differential scanning calorimeter. J. Cryst. Growth 285, 228–235 (2005)

    ADS  Google Scholar 

  9. A.A. Soliman, Thermal stability of Cu0.3(SSe20)0.7 chalcogenide glass by differential scanning calorimetry. Thermochim. Acta 423, 71–76 (2004)

    Google Scholar 

  10. M.I. Abd-Elrahman, A.Y. Abdel-Latief, R.M. Khafagy, N. Younis, M.M. Hafiz, Thermal annealing effect on the optical properties of Ag10As30S60 thin film. Spectrochim Acta Part A Mol. Biomol. Spectrosc. 137, 29–32 (2015)

    ADS  Google Scholar 

  11. M. Frumar, T. Wagner, Ag doped chalcogenide glasses and their applications. Curr. Opin. Solid State Mater. Sci. 7, 117–126 (2003)

    ADS  Google Scholar 

  12. F. Wang, W.P. Dunn, M. Jain, C. De Leo, N. Vicker, R. Savage, X. Jin, S. Mamedov, P. Boolchand, The effects of thermal annealing on the obliquely deposited Ag–Ge–S thin films. J. Phys. Chem. Solids 70, 978–981 (2009)

    ADS  Google Scholar 

  13. M.A. Abdel-Rahim, M.A.S. Hammam, A.A. Abu-Sehly, M.M. Hafiz, Composition effect on the pre-crystallization and crystallization characteristics for Se90xTe10Agx. J. Alloys Compd. 728, 1346–1361 (2017)

    Google Scholar 

  14. S.R. Elliott, Physics of Amorphous Materials (Longman Group Limited, London, 1984)

    Google Scholar 

  15. A. Madan, M.P. Shaw, The Physics and Applications of Amorphous Semiconductors (Academic Press Inc., London, 1988)

    Google Scholar 

  16. N. Abd-el Salam, E.R. Mansour Mohamed, M.A. Shaaban, A.-L. Abdel-Rahim, The crystallization kinetics studies of the two crystallization stages of As37.5Se37.5Ag25 glass using the model-fitting and model-free approaches. Chin. J. Phys. 60, 35–47 (2019)

    Google Scholar 

  17. M.J. Starink, Analysis of aluminium based alloys by calorimetry: quantitative analysis of reactions and reaction kinetics. Int. Mater. Rev. 49, 191–226 (2004)

    Google Scholar 

  18. A.A. Joraid, Estimating the activation energy for the non-isothermal crystallization of an amorphous Sb9.1Te20.1Se70.8 alloy. Thermochim. Acta 456, 1–6 (2007)

    Google Scholar 

  19. L. Liu, F.W. Zhi, L. Chen, A kinetic study of the non-isothermal crystallization of a Zr-based bulk metallic glass. Phys. Lett. 19, 1483–1486 (2002)

    Google Scholar 

  20. S. Vyazovkin, C.A. Wight, Isothermal and non isothermal reaction kinetics in solids. J. Phys. Chem. A 101, 8279–8284 (1997)

    Google Scholar 

  21. S. Vyazovkin, C.A. Wight, Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim. Acta 340–341, 53–68 (1999)

    Google Scholar 

  22. S. Vyazovkin, Advanced isoconversional method. J. Therm. Anal. 49, 1493–1499 (1997)

    Google Scholar 

  23. B.S. Patial, N. Thakur, S.K. Tripathi, On the crystallization kinetics of In additive Se–Te chalcogenide glasses. Thermochim. Acta 513, 1–8 (2011)

    Google Scholar 

  24. M.A. Abdel-Rahim, M.M. Hafiz, A.Z. Mahmoud, Crystallization kinetics of overlapping phases in Se70Te15Sb15 using isoconversional methods. Progr. Nat. Sci. Mater. Int. 25, 169–177 (2015)

    Google Scholar 

  25. S. Vyazovkin, A.K. Burnham, J.M. Criado, Perez-Maqueda LA, Popescu CSN. ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta. 520, 1–19 (2011)

    Google Scholar 

  26. J. Šesták, Thermal analysis: their measurements and theoretical thermal analysis. Part D Thermophys. Prop. Solids 12, 172–259 (1984)

    Google Scholar 

  27. P. Šimon, Isoconversional methods. J. Therm. Anal. Calorim. 76, 123–132 (2004)

    Google Scholar 

  28. P. Šimon, Single-step kinetics approximation employing non-Arrhenius temperature functions. J. Therm. Anal. Calorim. 79, 703–708 (2005)

    Google Scholar 

  29. J. Malek, Kinetic analysis of non-isothermal calorimetric data. Sci. Pap. Univ. Pardubice 2, 177–209 (1996)

    Google Scholar 

  30. J. Sestak, G. Berggren, Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim. Acta 3, 1–12 (1971)

    Google Scholar 

  31. M.J. Starink, Activation energy determination for linear heating experiments: deviations due to neglecting the low temperature end of the temperature integral. J. Mater. Sci. 42, 483–489 (2007)

    ADS  Google Scholar 

  32. J.H. Flynn, L.A. Wall, Adirect method for the determination of activation energy from thermo-gravimetric data. Polym. Lett. 4, 323–328 (1966)

    Google Scholar 

  33. S. Vyazovkin, N. Sbirrazzuoli, Estimating the activation energy for non-isothermal crystallization of polymer melts. J. Therm. Anal. Calorim. 72, 681–686 (2003)

    Google Scholar 

  34. S. Vyazovkin, N. Sbirrazzuoli, Isoconversional approach to evaluating the Hoffman–Lauritzen parameters (U* and Kg) from the overall rates of nonisothermal crystallization. Macromol. Rapid Commun. 25, 733 (2004)

    Google Scholar 

  35. A. Khawam, D.R. Flanagan, Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Nonisothermal kinetic studies. Thermochim. Acta 436, 101–112 (2005)

    Google Scholar 

  36. S. Vyazovkin, Modification of the integral isoconversional method to account for variation in the activation energy. J. Comput. Chem. 22, 178–183 (2001)

    Google Scholar 

  37. T. Ozawa, A new method of analyzing thermo-gravimetric data. Bull. Chem. Soc. Jp. 38, 188–1886 (1965)

    Google Scholar 

  38. F. Liu, S. Song, J. Xu, J. Wang, Determination of nucleation and growth modes from evaluation of transformed fraction in solid-state transformation. Acta Mater. 56, 6003–6012 (2008)

    Google Scholar 

  39. H.E. Kissinger, Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Bur. Stand. 57, 217–221 (1956)

    Google Scholar 

  40. H.L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Appl. Phenol. Plast. J. Polym. Sci. C 6, 183–195 (1964)

    Google Scholar 

  41. M. Imran, N. Saxena, D. Bhandari, M. Husain, Glass transition phenomena, crystallization kinetics and enthalpy released in binary Se100–xInx (x = 2, 4 and 10) semiconducting glasses. Phys. Status Solidi 181, 357–368 (2000)

    ADS  Google Scholar 

  42. M.M.A. Imran, D. Bhandari, N.S. Saxena, Glass transition phenomena, crystallization kinetics and thermodynamic properties of ternary Se80Te20−xInx (x = 2, 4, 6, 8 and 10) semiconducting glasses: theoretical and experimental aspects. Mater. Sci. Eng. A 292, 56–65 (2000)

    Google Scholar 

  43. M.F. Kotkata, E.A. Mahmoud, M.K. El-Mously, An X-ray study of the Se−Te system. Acta Phys. Acad. Sci. Hung. 52, 175–187 (1982)

    Google Scholar 

  44. Y.E.A. Voroshilov, Method for orientation of uniaxial nonlinear single crystals. Sov. J. Quant. Electron. 6(3), 326–402 (1976)

    ADS  Google Scholar 

  45. U. Wiegers, H. Hilz, A new method using ‘proteinase K’ to prevent mRNA degradation during isolation from HeLa cells. Biochem. Biophys. Res. Commun. 44, 513–519 (1971)

    Google Scholar 

  46. A.J.C. Wilson, Mathematical Theory of X-ray Powder Diffractometry (Centrex Publishing Company, Boston, 1963)

    Google Scholar 

  47. M. Dhanam, R. Balasundaraprabhu, S. Jayakumar, P. Gopalakrishnan, M. Kannan, Preparation and study of structural and optical properties of chemical bath deposited copper indium diselenide thin films. Phys. Stat. Solidi 191, 149–160 (2002)

    ADS  Google Scholar 

  48. S. Venkatachalam, D. Mangalaraj, S.K. Narayandass, Characterization of vacuum-evaporated ZnSe thin films. Phys. B 393, 47–55 (2007)

    ADS  Google Scholar 

  49. M.I. Abd-Elrahman, R.M. Khafagy, N. Younis, M.M. Hafiz, Structural and calorimetric studies of two crystallization stages of Ag10As30S60 glassy alloys. Phys. B 449, 155–159 (2014)

    ADS  Google Scholar 

  50. K. Ogusu, T. Kumagai, Y. Fujimori, M. Kitao, Thermal analysis and Raman scattering study on crystallization and structure of Agx (As04Se06)100–x glasses. J. Non-cryst. Solids 324, 118–126 (2003)

    ADS  Google Scholar 

  51. M. Abdel-Rahim, A. Abdel-Latief, M.N. Abd-el Salam, Kinetic analysis of crystallization process of Se–In–Pb glasses—isoconversion method. Thermochim. Acta 573, 57–64 (2013)

    Google Scholar 

  52. M. Lasocka, The effect of scanning rate on glass transition temperature of splatcooled Te85Ge15. Mater. Sci. Eng. 23, 173–177 (1976)

    Google Scholar 

  53. K. He, Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand 57(217), 221 (1956)

    Google Scholar 

  54. N.H. March, R.A. Street, M. Tosi, Amorphous Solids and Liquid State (Plenum, New York, 1985), p. 434

    Google Scholar 

  55. J.M. Cai, L.S. Bi, Kinetic analysis of wheat straw pyrolysis using isoconversional methods. J Therm Anal Calorim 98, 325–330 (2009)

    Google Scholar 

  56. J. Málek, E. C̆ernošková, R. Svejka, J. Sestak, G. Van der Plaats, Crystallization kinetics of Ge03Sb14S27 glass. Thermochim. Acta 280, 353–361 (1996)

    Google Scholar 

  57. S. Vyazovkin, W. Linert, Kinetic analysis of reversible thermal decomposition of solids. Int. J. Chem. Kinet. 27, 73–84 (1995)

    Google Scholar 

  58. J. Malek, The applicability of Johnson–Mehl–Avrami model in the thermal analysis of the crystallization kinetics of glasses. Thermochim. Acta. 267, 61–73 (1995)

    Google Scholar 

  59. W. Lu, B. Yan, W.-H. Huang, Complex primary crystallization kinetics of amorphous Finemet alloy. J. Non-Cryst. Solids 351, 3320–3324 (2005)

    ADS  Google Scholar 

  60. K. Tanka, Structural phase transitions in chalcogenide glasses. Phys. Rev. B. 39, 1270–1279 (1989)

    ADS  Google Scholar 

  61. P. Duhan, D. Baranock, A. Ondrejka, The study of transformation kinetics of the amorphous Pd–Si alloys. J. Non-Cryst. Solids. 2, 1411–1428 (1976)

    Google Scholar 

  62. J. Wong, H.C. Kou, J.S. Li, X.F. Cu, L.Q. Xing, L. Zhou, Determination of kinetic parameters during isochronal crystallization of Ti40Zr25Ni8Cu9Be18 metallic glass. J. Alloys Compd. 479, 835–893 (2009)

    Google Scholar 

  63. D.W. Henderson, Thermal analysis of non-isothermal crystallization kinetics in glass forming liquids. J. Non-Cryst. Solids 30, 301–315 (1979)

    ADS  Google Scholar 

  64. A.A. Joraid, Limitation of the Johnson–Mehl–Avrami (JMA) formula for kinetic analysis of the crystallization of a chalcogenide glass. Thermochim. Acta 436, 78–82 (2005)

    Google Scholar 

  65. M.A.A. Rahim, A.Y.A. Latief, A. El-Korashy, M.A. Sabet, Kinetic analysis of crystallization process in amorphous Se90−xTe10Pbx glasses. Mater. Trans. 51, 428–433 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansour Mohamed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, M., Moustafa, S. Morphology, structure and thermal analysis of (As50Se50)100−xAgx glasses. Appl. Phys. A 126, 270 (2020). https://doi.org/10.1007/s00339-020-3457-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3457-0

Keywords

Navigation