Skip to main content

Advertisement

Log in

Gallium nitride wafer slicing by a sub-nanosecond laser: effect of pulse energy and laser shot spacing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Gallium nitride (GaN)-based devices surpass the traditional silicon-based power devices in terms of higher breakdown voltage, faster-switching speed, higher thermal conductivity, and lower on-resistance. However, heteroepitaxial GaN growths like GaN on sapphire are not suitable for power devices due to the threading dislocation densities as high as 108/cm2. Recently, homoepitaxial GaN growth has become possible thanks to the native GaN substrates with dislocation densities in the order of 104/cm2 but the extremely high cost of the GaN substrates makes the homoepitaxy method unacceptable for industrial applications, and the slicing of wafers for reusing them is an effective solution for cost reduction. In this study, we will investigate a route for slicing the GaN single crystal substrate by controlling the laser pulse energy and changing the distance between each laser shot. The 2D and 3D crack propagations are observed by a multiphoton confocal microscope, and the cross section of samples is observed by a scanning electron microscope (SEM). The results showed that two types of radial and lateral cracking occurred depending on the pulse energy and shot pitch, and controlling them was of importance for attaining a smooth GaN substrate slicing. Cross-sectional SEM images showed that at suitable pulse energy and distance, crack propagation could be controlled with respect to the irradiation plane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Lidow, M. de Rooij, J. Strydom, D. Reusch, J. Glaser, GaN Transistors for Efficient Power Conversion (John Wiley & Sons Ltd, 2019)

    Book  Google Scholar 

  2. H. Amano, Y. Baines, E. Beam, M. Borga, T. Bouchet, P.R. Chalker, M. Charles, K.J. Chen, N. Chowdhury, R. Chu, C. De Santi, M.M. De Souza, S. Decoutere, L. Di Cioccio, B. Eckardt, T. Egawa, P. Fay, J.J. Freedsman, L. Guido, O. Häberlen, G. Haynes, T. Heckel, D. Hemakumara, P. Houston, J. Hu, M. Hua, Q. Huang, A. Huang, S. Jiang, H. Kawai, D. Kinzer, M. Kuball, A. Kumar, K.B. Lee, X. Li, D. Marcon, M. März, R. McCarthy, G. Meneghesso, M. Meneghini, E. Morvan, A. Nakajima, E.M.S. Narayanan, S. Oliver, T. Palacios, D. Piedra, M. Plissonnier, R. Reddy, M. Sun, I. Thayne, A. Torres, N. Trivellin, V. Unni, M.J. Uren, M. Van Hove, D.J. Wallis, J. Wang, J. Xie, S. Yagi, S. Yang, C. Youtsey, R. Yu, E. Zanoni, S. Zeltner, Y. Zhang, The 2018 GaN power electronics roadmap. J. Phys. D Appl. Phys. 51(16), 163001 (2018)

    Article  ADS  Google Scholar 

  3. J. Derluyn, M. Germain, E. Meissner, Gallium Nitride-Enabled High Frequency and High Efficiency Power Conversion (Springer, 2018)

    Google Scholar 

  4. M. Amilusik, T. Sochacki, B. Łucznik, M. Boćkowski, B. Sadovyi, A. Presz, I. Dzięcielewski, I. Grzegory, Analysis of self-lift-off process during HVPE growth of GaN on MOCVD-GaN/sapphire substrates with photolitographically patterned Ti mask. J. Cryst. Growth 380, 99–105 (2013)

    Article  ADS  Google Scholar 

  5. F. Lipski, T. Wunderer, S. Schwaiger, F. Scholz, “Fabrication of freestanding 2″ GaN wafers by hydride vapour phase epitaxy and self-separation during cooldown.” Physica Stat. Solidi (a) 207(6), 1287–1291 (2010)

    Article  ADS  Google Scholar 

  6. Ch. Hennig, E. Richter, M. Weyers, G. Tränkle, Freestanding 2-in GaN layers using lateral overgrowth with HVPE. J. Cryst. Growth 310(5), 911–915 (2008)

    Article  ADS  Google Scholar 

  7. D. Gogova, A. Kasic, H. Larsson, C. Hemmingsson, B. Monemar, F. Tuomisto, K. Saarinen, L. Dobos, B. Pécz, P. Gibart, B. Beaumont, Strain-free bulk-like GaN grown by hydride-vapor-phase-epitaxy on two-step epitaxial lateral overgrown GaN template. J. Appl. Phys. 96(1), 799–806 (2004)

    Article  ADS  Google Scholar 

  8. A.D. Williams, T.D. Moustakas, Formation of large-area freestanding gallium nitride substrates by natural stress-induced separation of GaN and sapphire. J. Cryst. Growth 300(1), 37–41 (2007)

    Article  ADS  Google Scholar 

  9. K. Yamane, M. Ueno, H. Furuya, N. Okada, K. Tadatomo, Successful natural stress-induced separation of hydride vapor phase epitaxy-grown GaN layers on sapphire substrates. J. Cryst. Growth 358, 1–4 (2012)

    Article  ADS  Google Scholar 

  10. S.W. Bedell, C. Bayram, K. Fogel, P. Lauro, J. Kiser, J. Ott, Y. Zhu, D. Sadana, Vertical light-emitting diode fabrication by controlled spalling. Appl. Phys. Express 6(11), 112301 (2013)

    Article  ADS  Google Scholar 

  11. D.J. Rogers, F.H. Teherani, A. Ougazzaden, S. Gautier, L. Divay, A. Lusson, O. Durand, F. Wyczisk, G. Garry, T. Monteiro, M.R. Correira, M. Peres, A. Neves, D. McGrouther, J.N. Chapman, M. Razeghi, Use of ZnO thin films as sacrificial templates for metal organic vapor phase epitaxy and chemical lift-off of GaN. Appl. Phys. Lett. 91(7), 071120 (2007)

    Article  ADS  Google Scholar 

  12. J. Ha, S.W. Lee, H. Lee, H. Lee, S.H. Lee, H. Goto, T. Kato, K. Fujii, M.W. Cho, T. Yao, The fabrication of vertical light-emitting diodes using chemical lift-off process. IEEE Photonics Technol. Lett. 20(3), 175–177 (2008)

    Article  ADS  Google Scholar 

  13. T.-Y. Tsai, R.-H. Horng, D.-S. Wuu, S.-L. Ou, M.-T. Hung, H.-H. Hsueh, GaN epilayer grown on Ga2O3 sacrificial layer for chemical lift-off application. Electrochem. Solid-State Lett. 14(11), H434 (2011)

    Article  Google Scholar 

  14. C.-F. Lin, J.-J. Dai, M.-S. Lin, K.-T. Chen, W.-C. Huang, C.-M. Lin, R.-H. Jiang, Y.-C. Huang, An AlN sacrificial buffer layer inserted into the GaN/patterned sapphire substrate for a chemical lift-off process. Appl. Phys. Express 3(3), 031001 (2010)

    Article  ADS  Google Scholar 

  15. D.J. Meyer, B.P. Downey, D.S. Katzer, N. Nepal, V.D. Wheeler, M.T. Hardy, T.J. Anderson, D.F. Storm, Epitaxial lift-off and transfer of III-N materials and devices from SiC substrates. IEEE Trans. Semicond. Manuf. 29(4), 384–389 (2016)

    Article  Google Scholar 

  16. Yu. Melnik, A. Nikolaev, I. Nikitina, K. Vassllevski, V. Dmitriev, Properties of free-standing GaN bulk crystals grown by HVPE. MRS Online Proc. Libr. 482(1), 346–351 (1997)

    Google Scholar 

  17. M. Lesecq, V. Hoel, A.L. des Etangs-Levallois, E. Pichonat, Y. Douvry, J.C. De Jaeger, High performance of AlGaN/GaN HEMTs reported on adhesive flexible tape. IEEE Elect. Device Lett. 32(2), 143–145 (2011)

    Article  ADS  Google Scholar 

  18. M. Lee, D. Mikulik, J. Kim, Y. Tak, J. Kim, M. Shim, Y. Park, U. Chung, E. Yoon, S. Park, A novel growth method of freestanding GaN using in situ removal of Si substrate in hydride vapor phase epitaxy. Appl. Phys. Express 6(12), 125502 (2013)

    Article  ADS  Google Scholar 

  19. J. Kim, C. Bayram, H. Park, C.-W. Cheng, C. Dimitrakopoulos, J.A. Ott, K.B. Reuter, S.W. Bedell, D.K. Sadana, Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Nat. Commun. 5(1), 4836 (2014)

    Article  ADS  Google Scholar 

  20. M.K. Kelly, O. Ambacher, R. Dimitrov, R. Handschuh, M. Stutzmann, Optical process for liftoff of group III-nitride films. Phys. Stat. Solidi (a) 159(1), R3–R4 (1997)

    Article  ADS  Google Scholar 

  21. C. Youtsey, R. McCarthy, R. Reddy, K. Forghani, A. Xie, E. Beam, J. Wang, P. Fay, T. Ciarkowski, E. Carlson, L. Guido, Wafer-scale epitaxial lift-off of GaN using bandgap-selective photoenhanced wet etching. Phys. Stat. Solidi (b) 254(8), 1600774 (2017)

    Article  ADS  Google Scholar 

  22. C.-Y. Lee, Y.-P. Lan, P.-M. Tu, S.-C. Hsu, C.-C. Lin, H.-C. Kuo, G.-C. Chi, C.-Y. Chang, Natural substrate lift-off technique for vertical light-emitting diodes. Appl. Phys. Express 7(4), 042103 (2014)

    Article  ADS  Google Scholar 

  23. Y.-H. Yeh, K.-M. Chen, Y.-H. Wu, Y.-C. Hsu, T.-Y. Yu, W.-I. Lee, Hydrogen etching of GaN and its application to produce free-standing GaN thick films. J. Cryst. Growth 333(1), 16–19 (2011)

    Article  ADS  Google Scholar 

  24. S.W. Bedell, P. Lauro, J.A. Ott, K. Fogel, D.K. Sadana, Layer transfer of bulk gallium nitride by controlled spalling. J. Appl. Phys. 122(2), 025103 (2017)

    Article  ADS  Google Scholar 

  25. D. Iida, S. Kawai, N. Ema, T. Tsuchiya, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, Laser lift-off technique for freestanding GaN substrate using an In droplet formed by thermal decomposition of GaInN and its application to light-emitting diodes. Appl. Phys. Lett. 105(7), 072101 (2014)

    Article  ADS  Google Scholar 

  26. A. Tauzin, T. Akatsu, M. Rabarot, J. Dechamp, M. Zussy, H. Moriceau, J.F. Michaud, A.M. Charvet, L.D. Cioccio, F. Fournel, J. Garrione, B. Faure, F. Letertre, N. Kernevez, Transfers of 2-inch GaN films onto sapphire substrates using smart cuttm technology. Elec. Lett. 41(11), 668–670 (2005)

    Article  ADS  Google Scholar 

  27. O. Moutanabbir, U. Gösele, Bulk GaN ion cleaving. J. Electron. Mater. 39(5), 482–488 (2010)

    Article  ADS  Google Scholar 

  28. R.B.-K. Chung, D. Kim, S.-K. Lim, J.-S. Choi, K.-J. Kim, B.-H. Lee, K.S. Jung, H.-J. Kim-Lee, W.J. Lee, B. Park, K. Woo, Layer-transferred GaN template by ion cut for nitride-based light-emitting diodes. Appl. Phys. Express 6(11), 111005 (2013)

    Article  ADS  Google Scholar 

  29. K. Huang, T. You, Q. Jia, A. Yi, S. Zhang, R. Zhang, J. Lin, M. Zhou, W. Yu, B. Zhang, X. Ou, X. Wang, Defects induced by MeV H+ implantation for exfoliating of free-standing GaN film. Appl. Phys. A 124(2), 118 (2018)

    Article  ADS  Google Scholar 

  30. V. Voronenkov, N. Bochkareva, R. Gorbunov, A. Zubrilov, V. Kogotkov, P. Latyshev, Y. Lelikov, A. Leonidov, Y. Shreter, Laser slicing: a thin film lift-off method for GaN-on-GaN technology. Results Phys. 13, 102233 (2019)

    Article  Google Scholar 

  31. N.M. Bulgakova, V.P. Zhukov, Lasers in Materials Science (Springer, 2014), p. 191

    Google Scholar 

  32. I.M. Burakov, N.M. Bulgakova, R. Stoian, A. Rosenfeld, I.V. Hertel, Theoretical investigations of material modification using temporally shaped femtosecond laser pulses. Appl. Phys. A 81(8), 1639–1645 (2005)

    Article  ADS  Google Scholar 

  33. Y. Okamoto, M. Ota, A. Okada, Investigation of separation method for gallium nitride with internal modified layer by ultrashort pulsed laser. Int. J. Electr. Mach. 24, 21–26 (2019)

    Article  Google Scholar 

  34. O. Krüger, J.-H. Kang, M. Spevak, U. Zeimer, S. Einfeldt, Precision UV laser scribing for cleaving mirror facets of GaN-based laser diodes. Appl. Phys. A 122(4), 396 (2016)

    Article  ADS  Google Scholar 

  35. M.V. Virko, V.S. Kogotkov, A.A. Leonidov, V.V. Voronenkov, Yu.T. Rebane, A.S. Zubrilov, R.I. Gorbunov, P.E. Latyshev, N.I. Bochkareva, Yu.S. Lelikov, D.V. Tarhin, A.N. Smirnov, VYu. Davydov, Yu.G. Shreter, On the laser detachment of n-GaN films from substrates, based on the strong absorption of IR light by free charge carriers in n+-GaN substrates. Semiconductors 50(5), 699–704 (2016)

    Article  ADS  Google Scholar 

  36. S. Kanehira, K. Miura, K. Fujita, K. Hirao, J. Si, N. Shibata, Y. Ikuhara, Optically produced cross patterning based on local dislocations inside MgO single crystals. Appl. Phys. Lett. 90(16), 163110 (2007)

    Article  ADS  Google Scholar 

  37. M. Sakakura, Y. Ishiguro, N. Fukuda, Y. Shimotsuma, K. Miura, Modulation of laser induced-cracks inside a LiF single crystal by fs laser irradiation at multiple points. Opt. Express 21(22), 26921–26928 (2013)

    Article  ADS  Google Scholar 

  38. L. Rapp, R. Meyer, L. Furfaro, C. Billet, R. Giust, F. Courvoisier, High speed cleaving of crystals with ultrafast bessel beams. Opt. Express 25(8), 9312–9317 (2017)

    Article  ADS  Google Scholar 

  39. E.R. Dobrovinskaya, L.A. Lytvynov, V. Pishchik, Sapphire: Material, Manufacturing, Applications (Springer, 2009)

    Google Scholar 

  40. P.B. Hirsch, P. Pirouz, S.G. Roberts, P.D. Warren, Indentation plasticity and polarity of hardness on {111} faces of GaAs. Philos. Mag. B 52(3), 759–784 (1985)

    Article  ADS  Google Scholar 

  41. I. Ratschinski, H.S. Leipner, F. Heyroth, W. Fränzel, O. Moutanabbir, R. Hammer, M. Jurisch, Indentation-induced dislocations and cracks in (0001) freestanding and epitaxial GaN. J. Phys. Conf. Ser. 281, 012007 (2011)

    Article  Google Scholar 

Download references

Funding

Part of this research was conducted under a contract of R&D for expansion of radio wave resources (JPJ000254), organized by the Ministry of Internal Affairs and Communications, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Sena.

Ethics declarations

Conflict of interest

The authors declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Data availability

Data underlying the results presented in this paper are not publicly available at this time but may be obtained from the authors upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sena, H., Tanaka, A., Wani, Y. et al. Gallium nitride wafer slicing by a sub-nanosecond laser: effect of pulse energy and laser shot spacing. Appl. Phys. A 127, 648 (2021). https://doi.org/10.1007/s00339-021-04808-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04808-y

Keywords

Navigation