Skip to main content
Log in

Temperature analysis of the Gaussian distribution modeling the barrier height inhomogeneity in the Tungsten/4H-SiC Schottky diode

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The temperature dependence of the electrical properties of the Schottky barrier contact W/4H-SiC is studied in term of the Werner’s model assuming a Gaussian distribution of the barrier height to model the inhomogeneity of the Schottky interface. The Gaussian distribution is characterized by the parameters \(\overline{\phi }_{B}\) as a mean barrier height, ρ2, ρ3 as coefficients quantifying the barrier deformation and σs as a standard deviation. The effect of the series resistance Rs and its relation with the standard deviation σs is also reported. A vertical optimization process is used to extract simultaneously all the parameters cited above as function of temperature from the forward current–voltage (I-V) characteristics at temperatures ranging from 303 to 448 K. The temperature dependence of the characterized parameters of the W/4H-SiC Schottky structure enables us to quantify the inhomogeneity state of the Schottky barrier height prevailing at the MS interface in terms of those extracted parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S.M. Sze, Physics of Semiconductor Devices. (Wiley-Interscience, 1981), p. 135–175

  2. P.L. Hanselaer, W.H. Laflere, R.L. Van Meirhaeghe, F. Cardon, J. Appl. Phys, 56, 2309–2314 (1984)

  3. P.L. Hanselaer, W.H. Laflere, R.L. Van Meirhaeghe, F. Cardon, Appl. Phys. A, 39, 129–133 (1986)

  4. E.H. Rhoderick, R.H. Williams, Metal Semiconductor Contacts, 2nd edn. (Clarendon, Oxford, 1988), pp. 11–24

    Google Scholar 

  5. R.T. Tung, Appl. Phys. Lett. 58(24), 2821–2823 (1991)

  6. H. Jurgen, H. Werner, H. Guttler, J. Appl. Phys. 69(3), 1522–1533 (1991)

  7. H. Herbert Guttler, J.H. Werner, Appl. Phys. lett, 56 N° 12 (1990)

  8. S. Zhu, R.L. Van Meirhaeghe, C. Detavernier, G.-P. Ru, B.-Z. Li, F. Cardon, Solid State Commun. 112, 611–618 (1999)

  9. G.M. Vanalme, L. Goubert, R.L. Van Meirhaeghe, F. Cardon, P.V. Daele, Semicond. Sci. Technol. 14, 871–877 (1999)

  10. S. Forment, R.L. Van Meirhaeghe, A. De Vrieze, K. Strubbe, W.P. Gomes, Semicond. Sci. Technol. 16, 975–981 (2001)

  11. İ. Taşçıoğlu, U. Aydemir, Ş. Altındal, J. Appl. Phys. 108, 064506-1–064506-7 (2010)

  12. E. Omotoso, W.E. Meyer, F.D. Auret, A.T. Paradzah, M. Diale, S.M.M. Coelho, P.J. Janse van Rensburg, Mater. Sci. Semicond. Process 39, 112–118 (2015)

  13. A. Di Bartolomeo, Phys. Rep. 606, 1–58 (2016)

  14. B. Prasanna Lakshmi, M. Siva Pratap Reddy, A. Ashok Kumar, V. Rajagopal Reddy, Current Appl. Phys. 12, 765–772 (2012)

  15. H.H. Güllü, M. Parlak, Energy Procedia 102, 110–120 (2016)

  16. M. Sağlam, B. Güzeldir, J. Phys. Conference Series 707, 012013-1–012013-7 (2016)

  17. S. Mahato, RSC Adv. 7, 47125–47131 (2017)

  18. N.A. Al-Ahmadi, F.A. Ebrahim, H.A. Al-Jawhari, R.H. Mari, M. Henini, Mod. Electron. Mater. 3, 66–71 (2017)

  19. A. Ashok Kumar, L. Dasaradha Rao, V. Rajagopal Reddy, C-J. Choi, Current Appl. Phys. 13(6), 1604–1610 (2013)

  20. A. Kumar, S. Arafin, M. Christian Amann, R. Singh, Nanoscale Res. Lett. 8, 1–7 (2013)

  21. S.M. Lim, H.-W. Yeon, G.-B. Lee, M.-G. Jin, S.-Y. Lee, J. Jo, M. Kim, Y.-C. Joo, Sci. Rep. 9, 1–9 (2019)

  22. A.A.M. Farag, I.S. Yahia, Synth. Met. 161, 32–39 (2011)

  23. A. Akkaya, L. Esmer, T. Karaaslan, H. Çetin, E. Ayyıldız, Mater. Sci. Semicond. Process 28, 127–134 (2014)

  24. L. Huang, D. Wang, Jap. J. Appl. Phys. 54 (2015)

  25. A. Gümüş, Ş. Altındal, Mater. Sci. Semicond. Process 28, 66–71 (2014)

  26. N. Tugluoglu, O. Faruk Yuksel, H. Safak, S. Karadeniz, Phys. Status Solidi A 209, 2313–2316 (2012)

  27. A.N. Bestas¸, S. Yazıcı, F. Aktas¸, B. Abay, Appl. Surf. Sci. 318, 280–284 (2014)

  28. P.R. Sekhar Reddy, V. Janardhanam, H.-K. Lee, K.-H. Shim, S.-N. Lee, V.R. Reddy, C.-J. Choi, J. Elec. Materi 49, 297–305 (2020)

  29. N. Basman, S.F. Varol, J. Electron. Mater. 48, 7874–7881 (2019)

  30. A.B. Renz, V.A. Shah, O.J. Vavasour, Y. Bonyadi, F. Li, T. Dai, G. W. C. Baker, S. Hindmarsh, Y. Han, M. Walker, Y. Sharma, Y. Liu, B. Raghothamachar, M. Dudley, P.A. Mawby, P.M. Gammon, J. Appl. Phys. 127, 025704-1–025704-9 (2020)

  31. J.-H. Shin, J. Park, S.Y. Jang, T. Jang, K.S. Kim, Appl. Phys.Lett. 102, 243505-1–243505-4 (2013)

  32. P.M. Gammon, A. Perez-Tomas, V.A. Shah, O. Vavasour, E. Donchev, J.S. Pang, M. Myronov, C.A. Fisher, M.R. Jennings, D.R. Leadley, P.A. Mawby, J. Appl. Phys. 114, 223704-1–223704-11 (2013)

  33. M. Mamor, J. Phys.: Condens. Matter. 21, 335802-1–335802-12 (2009)

  34. M.J. Bozack, Phys. stat. sol. (b) 2002, 549–580 (1997)

  35. S. Toumi, A. Ferhat-Hamida, L. Boussouar, A. Sellai, Z. Ouennoughi, H. Ryssel, Microelectron. Eng. 86, 303–309 (2009)

  36. J. Osvald, E. Dobrocka, Semicond. Sci. Technol. 11, 1198–1202 (1996)

  37. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in Fortran 77, The art of Scientific Computing, (Combridge University Press 1986–1992), p. 372–376

  38. A.N. Saxena, Surf. Sci. 13, 151–171 (1969)

  39. B. Sahin, H. Cetin, E. Ayyildiz, Solid State Commun. 135, 490–495 (2005)

  40. A. Turut, M. Saglam, H. Efeoglu, N. Yalcln, M. Ylldlrlm, B. Abay, Physica B, 205, 41–50 (1995)

  41. C. Raynaud, K. Isoird, M. Lazar, C. M. Johnson, N. Wright, J. Appl. Phys. 91, N°12 (2002)

Download references

Acknowledgements

One of the authors S. Toumi would like to thank Pr T. Guerfi for his assistance in the correction of the present paper and for numerous fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Toumi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toumi, S., Ouennoughi, Z. & Weiss, R. Temperature analysis of the Gaussian distribution modeling the barrier height inhomogeneity in the Tungsten/4H-SiC Schottky diode. Appl. Phys. A 127, 661 (2021). https://doi.org/10.1007/s00339-021-04787-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04787-0

Keywords

Navigation