Skip to main content
Log in

Effect of copper on the structural, morphological and dielectric properties of Pb1−xCuxNb2O6 (x = 0, 1/3, 1/2, 2/3 and 1) perovskites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Tungsten bronze structure-based PbNb2O6 ceramics are functional materials and are usually known as low-density ceramics. The low-density property may limit their practical applications. In this study, Cu-substituted PbNb2O6, with different concentrations, was prepared by a well-known solgel auto-combustion method. X-ray diffraction analysis confirmed the formation of rhombohedral perovskite phase for PbNb2O6 which is transformed to monoclinic phase upon complete replacement of Pb by Cu. The surface morphology of all the samples suggested that, with the increase in copper content, the grain size decreased, which resulted in an increase in the density of these ceramics. Energy-dispersive X-ray spectroscopy assured the presence of all the elements in the samples in accordance with their empirical formulae. Fourier transform infrared spectroscopy confirmed complete combustion, and the downward peaks in the corresponding spectra were purely related to perovskites. Frequency-dependent dielectric analysis showed that the dielectric constant and conductivity of PbNb2O6 improved with increasing Cu contents and less than 1% dielectric loss was achieved. In addition, complex impedance spectroscopy and complex modulus analysis revealed the existence of non-Debye-type relaxation in these compositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K.R. Sahu, U. De, J. Solid State Phys. 2013, 1 (2013)

    Article  ADS  Google Scholar 

  2. K. Lin, L. You, Q. Li, J. Chen, J. Deng, X. Xing, Inorg. Chem. 55, 8130 (2016)

    Article  Google Scholar 

  3. G. Goodman, J. Am. Ceram. Soc. 36, 368 (1953)

    Article  Google Scholar 

  4. R.L. González, Y. Leyet, F. Guerrero, J.D.L.S. Guerra, M. Venet, J.A. Eiras, J. Phys. Condens. Matter 19, 136218 (2007)

    Article  ADS  Google Scholar 

  5. K.R. Sahua, K.R. Chakrabortyb, U. De, Materials Today: Proceedings (Elsevier Ltd, Amsterdam, 2019), pp. 869–874

    Google Scholar 

  6. J. R. Macdonald and W. B. Johnson, Impedance Spectroscopy: Theory, Experiment, and Applications. in Fundamentals of Impedance Spectroscopy (2005).

  7. A.A. Nesterov, E.V. Karyukov, K.S. Masurenkov, Russ. J. Appl. Chem. 82, 370 (2009)

    Article  Google Scholar 

  8. F. Guerrero, Y. Leyet, M. Venet, J. de Los, J.A. Eiras, J. Eur. Ceram. Soc. 27, 4041 (2007)

    Article  Google Scholar 

  9. M. İlhan, İÇ. Keskin, Phys. B Condens. Matter 585, 412106 (2020)

    Article  Google Scholar 

  10. R. Fang, Z. Zhou, R. Liang, X. Dong, Ceram. Int. 46, 23505 (2020)

    Article  Google Scholar 

  11. K. Cai, F. Jiang, P. Deng, J. Ma, D. Guo, J. Am. Ceram. Soc. 98, 3165 (2015)

    Article  Google Scholar 

  12. J.J. Yuan, X.M. Chen, J.P. Zhou, P. Liu, Solid State Sci. 35, 74 (2014)

    Article  ADS  Google Scholar 

  13. X.M. Chen, J. Wang, X.X. Liang, K. Sun, J.P. Zhou, P. Liu, Mater. Chem. Phys. 143, 1149 (2014)

    Article  Google Scholar 

  14. D. Cortecchia, H.A. Dewi, J. Yin, A. Bruno, S. Chen, T. Baikie, P.P. Boix, M. Grätzel, S. Mhaisalkar, C. Soci, N. Mathews, Inorg. Chem. 55, 1044 (2016)

    Article  Google Scholar 

  15. M. Zhao, C. Chang, Y. Xiao, R. Gu, J. He, L.-D. Zhao, J. Alloys Compd. 781, 820 (2019)

    Article  Google Scholar 

  16. G. Valverde Aguilar, in Sol-Gel Method - Des. Synth. New Mater. with Interes. Phys. Chem. Biol. Prop. (IntechOpen, 2019).

  17. H. Mgbemere, G. Schneider, M. Hoelzel, M. Hinterstein, J. Appl. Crystallogr. 49, 891 (2016)

    Article  Google Scholar 

  18. Y.C. Zhang, B.J. Fu, Q. Liu, J. Alloys Compd. 477, 716 (2009)

    Article  Google Scholar 

  19. H. M. Rietveld and IUCr, J. Appl. Crystallogr. 2, 65 (1969).

  20. H.E. Mgbemere, G.A. Schneider, J. Asian Ceram. Soc. 4, 97 (2016)

    Article  Google Scholar 

  21. A. Mesbah, J.-P. Rapin, M. François, C. Cau-dit-Coumes, F. Frizon, F. Leroux, G. Renaudin, J. Am. Ceram. Soc. 94, 261 (2011)

    Article  Google Scholar 

  22. W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, R.G. Palgrave, Chem. Sci. 7, 4548 (2016)

    Article  Google Scholar 

  23. P.P. Khirade, A.B. Shinde, A.V. Raut, S.D. Birajdar, K.M. Jadhav, Ferroelectrics 504, 216 (2016)

    Article  Google Scholar 

  24. M. Amin, H.M. Rafique, M. Yousaf, S.M. Ramay, M. Saleem, S.K. Abbas, S. Atiq, J. Mater. Sci. Mater. Electron. 28, 17234 (2017)

    Article  Google Scholar 

  25. B. Parveen, M. Hassan, S. Atiq, S. Riaz, S. Naseem, M.A. Toseef, Prog. Nat. Sci. Mater. Int. 27, 303 (2017)

    Article  Google Scholar 

  26. C. Letters, E. Guneri, F. Gode, C. Ulutas, F. Kirmizigul, G. Altindemir, C. Gumus 7, 685 (2010)

    Google Scholar 

  27. A.Y. Kuznetsov, R. Machado, L.S. Gomes, C.A. Achete, V. Swamy, B.C. Muddle, V. Prakapenka, Appl. Phys. Lett. 94, 193117 (2009)

    Article  ADS  Google Scholar 

  28. V. Verma, A. Beniwal, A. Ohlan, R. Tripathi, J. Magn. Magn. Mater. 394, 385 (2015)

    Article  ADS  Google Scholar 

  29. K.R. Chakraborty, K.R. Sahu, A. De, U. De, Integr. Ferroelectr. 120, 102–113 (2010)

    Article  Google Scholar 

  30. M. Augsburger, J. Pedregosa, G. Sosa, Rev. La Soc. Química México 44, 151 (2000)

    Google Scholar 

  31. K.T. Arulmozhi, N. Mythili, AIP Adv. 3, 122122 (2013)

    Article  ADS  Google Scholar 

  32. N. Priyadarshani, T.C. Sabari Girisun, S. Venugopal Rao, Opt. Mater. (Amst). 66, 534 (2017)

    Article  ADS  Google Scholar 

  33. J.T. Last, Phys. Rev. 105, 1740 (1957)

    Article  ADS  Google Scholar 

  34. S. Bouzidi, A. Ben Hassen, J. Dhahri, K. Khirouni, J. Alloys Compd. 781, 936 (2019)

    Article  Google Scholar 

  35. H.E. Sekrafi, A. Ben Jazia Kharrat, M.A. Wederni, N. Chniba-Boudjada, K. Khirouni, W. Boujelben, J. Mater. Sci. Mater. Electron. 30, 876 (2019)

    Article  Google Scholar 

  36. B. Parveen, M. Hassan, S. Atiq, S. Riaz, S. Naseem, S. Zaman, J. Mater. Sci. 52, 7369 (2017)

    Article  ADS  Google Scholar 

  37. G. Ray, N. Sinha, B. Singh, I. Bdikin, B. Kumar, Cryst. Growth Des. 15, 1852 (2015)

    Article  Google Scholar 

  38. N.-I. Kim, Y.J. Sa, T.S. Yoo, S.R. Choi, R.A. Afzal, T. Choi, Y.-S. Seo, K.-S. Lee, J.Y. Hwang, W.S. Choi, S.H. Joo, J.-Y. Park, Sci. Adv. 4, eaap9360 (2018)

    Article  ADS  Google Scholar 

  39. K. Kumari, A. Prasad, K. Prasad, Am. J. Mater. Sci. 6, 1 (2016)

    Google Scholar 

  40. M. Amin, H.M. Rafique, M. Yousaf, S.M. Ramay, S. Atiq, J. Mater. Sci. Mater. Electron. 27, 11003 (2016)

    Article  Google Scholar 

  41. N. Ahlawat, S. Sanghi, A. Agarwal, N. Ahlawat, Solid State Ionics 204–205, 20 (2011)

    Article  Google Scholar 

  42. C. Rayssi, S. El-Kossi, J. Dhahri, K. Khirouni, RSC Adv. 8, 17139 (2018)

    Article  ADS  Google Scholar 

  43. K. Abd elmadjid, F. Gheorghiu, M. Zerdali, M. Kadri, S. Hamzaoui, Ceram. Int. 45, 9043 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Higher Education Commission (HEC) of Pakistan for funding this research work in the context of ‘Indigenous 5000 Ph.D. Fellowship Program’. This work is a part of Ph.D. study of Sana Aslam (S.Aslam). The authors would like to acknowledge Researcher’s Supporting Project Number (RSP-2021/71), King Saud University, Riyadh, Saudi Arabia for their partial support in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahid M. Ramay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, S., Rafique, H.M., Ramay, S.M. et al. Effect of copper on the structural, morphological and dielectric properties of Pb1−xCuxNb2O6 (x = 0, 1/3, 1/2, 2/3 and 1) perovskites. Appl. Phys. A 127, 630 (2021). https://doi.org/10.1007/s00339-021-04783-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04783-4

Keywords

Navigation