Skip to main content
Log in

Improved performance in organic solar cells using aluminum-doped cathode-modifying layer

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Organic solar cells (OSCs) have been developed using aluminum-doped bathocuproine (BCP:Al) as cathode-modifying layer. Although BCP:Al thin film shows decreased electron mobility than neat BCP thin film, the former is advantageous over the latter in the following two aspects. Firstly, BCP:Al has more gap states, offering more efficient electron injection and extraction at the interface with electron acceptor, thereby contributing to the increase in fill factor. Secondly, BCP:Al increases the optical absorption of device, contributing to the increase in short-circuit current density. As a result, the OSC based on BCP:Al shows improved power conversion efficiency than that based on neat BCP. Moreover, the former device presents increased thermal stability than the latter, mostly because doped Al clusters can inhibit the aggregation tendency of BCP molecules. We provide a novel insight to fabricate cost-effective cathode-modifying layers, useful for pushing forward the commercialization of OSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References.

  1. C.W. Tang, Appl. Phys. Lett. 48, 183–185 (1986)

    Article  ADS  Google Scholar 

  2. N.S. Sariciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Science 258, 1474–1476 (1992)

    Article  ADS  Google Scholar 

  3. Z.C. He, B. Xiao, F. Liu, H.B. Wu, Y.L. Yang, S. Xiao, C. Wang, T.P. Russell, Y. Cao, Nat. Photon. 9, 174 (2015)

    Article  ADS  Google Scholar 

  4. D. Qin, H. Cao, C. Yan, S.S. Meng, J.X. Tang, X. Zhan, J. Mater. Chem. A 5, 25385–25390 (2017)

    Article  Google Scholar 

  5. C. Yan, S. Barlow, Z. Wang, H. Yan, A.K.-Y. Jen, S.R. Marder, X. Zhan, Nat. Rev. Mater. 3, 18003 (2018)

    Article  ADS  Google Scholar 

  6. Y. Lin, J. Wang, Z. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, Adv. Mater. 27, 1170–1174 (2015)

    Article  Google Scholar 

  7. J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H. Yip, T. Lau, X. Lu, C. Zhu, H. Peng, P. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, Y. Zou, Joule 3, 1140–1151 (2019)

    Article  Google Scholar 

  8. Q. Liu, Y. Jiang, J. Qin, J. Xu, W. Li, J. Xiong, J. Liu, Z. Xiao, K. Sun, S. Yang, X. Zhang, L. Ding, Sci. Bull. 65, 272–275 (2020)

    Article  Google Scholar 

  9. S. Li, L. Zhan, Y. Jin, G. Zhou, T.-K. Lau, R. Qin, M. Shi, C.-Z. Li, H. Zhu, X. Lu, F. Zhang, H. Chen, Adv. Mater. 32, 2001160 (2020)

    Article  Google Scholar 

  10. C. Li, J. Zhou, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, Y. Sun, Nat. Energy 6, 605–613 (2021)

    Article  ADS  Google Scholar 

  11. Y. Cui, Y. Wang, J. Bergqvist, H. Yao, Y. Xu, B. Gao, C. Yang, S. Zhang, O. Inganäs, F. Gao, J. Hou, Nat. Energy 4, 768–775 (2019)

    Article  ADS  Google Scholar 

  12. S.V. Dayneko, M. Pahlevani, G.C. Welch, A.C.S. Appl, Mater. Interfaces 11, 46017–46025 (2019)

    Article  Google Scholar 

  13. I. Mathews, S.N. Kantareddy, T. Buonassisi, I.M. Peter, Joule 3, 1415–1426 (2019)

    Article  Google Scholar 

  14. J. Xiao, X. Jia, C. Duan, F. Huang, H.L. Yip, Y. Cao, Adv. Mater. 33, 2008158 (2021)

    Article  Google Scholar 

  15. Y. Chen, M. Li, Y. Wang, J. Wang, M. Zhang, Y. Zhou, J. Yang, Y. Liu, F. Liu, Z. Tang, Q. Bao, Z. Bo, Angew. Chem. Int. Ed. 59, 22714–22720 (2020)

    Article  Google Scholar 

  16. H. Huang, Q. Guo, S. Feng, C. Zhang, Z. Bi, W. Xue, J. Yang, J. Song, C. Li, X. Xu, Z. Tang, W. Ma, Z. Bo, Nat. Commun. 10, 3038 (2019)

    Article  ADS  Google Scholar 

  17. Z. Yu, Z. Liu, F. Chen, R. Qin, T.K. Lau, J. Yin, X. Kong, X. Lu, M. Shi, C. Li, H. Chen, Nat. Commun. 10, 2152 (2019)

    Article  ADS  Google Scholar 

  18. F. Huang, H. Wu, Y. Cao, Chem. Soc. Rev. 39, 2500–2521 (2010)

    Article  Google Scholar 

  19. Z. Zhang, B. Qi, Z. Jin, D. Chi, Z. Qi, Y. Li, Energy Environ. Sci. 7, 1966–1973 (2014)

    Article  Google Scholar 

  20. P. Peumans, S.R. Forrest, Appl. Phys. Lett. 79, 126–128 (2001)

    Article  ADS  Google Scholar 

  21. J. Xue, S. Uchida, B.P. Rand, S.R. Forrest, Appl. Phys. Lett. 84, 3013–3015 (2004)

    Article  ADS  Google Scholar 

  22. G.H. Jung, J.L. Lee, J. Mater. Chem. A 1, 3034–3039 (2013)

    Article  Google Scholar 

  23. D. Qin, W. Wang, M. Wang, S. Jin, J. Zhang, Semicond. Sci. Technol. 29, 125011 (2014)

    ADS  Google Scholar 

  24. S.O. Jeon, J.Y. Lee, Sol. Energ. Mat. Sol. C. 101, 160–165 (2012)

    Article  Google Scholar 

  25. M. Vogel, S. Doka, C. Breyer, M.C. Lux-Steiner, K. Fostiropoulos, Appl. Phys. Lett. 89, 163501 (2006)

    Article  ADS  Google Scholar 

  26. H. Gommans, B. Verreet, B.P. Rand, R. Muller, J. Poortmans, P. Heremans, J. Genoe, Adv. Funct. Mater. 18, 3686–3691 (2008)

    Article  Google Scholar 

  27. X. Hao, S. Wang, W. Fu, T. Sakurai, S. Masuda, Org. Electrton. 15, 1773 (2014)

    Article  Google Scholar 

  28. S. Wang, T. Sakurai, K. Komatsu, K. Akimoto, J. Cryst. Growth 378, 415–417 (2013)

    Article  ADS  Google Scholar 

  29. F. Jafari, B.R. Patil, F. Mohtaram, A.L.F. Cauduro, H.G. Rubahn, A. Behjat, M. Madsen, Sci. Rep. 9, 10422 (2019)

    Article  ADS  Google Scholar 

  30. X. Yu, X. Yu, J. Zhang, D. Zhang, L. Chen, Y. Long, Sol. Energy 153, 96–103 (2017)

    Article  ADS  Google Scholar 

  31. S. Park, S.J. Tark, J.S. Lee, H. Lim, D. Kim, Sol. Energ. Mat. Sol. C. 93, 1020 (2009)

    Article  Google Scholar 

  32. W.J. Shin, J.Y. Lee, JCh. Kim, T.H. Yoon, T.S. Kim, O.K. Song, Org. Electron. 9, 333 (2008)

    Article  Google Scholar 

  33. G.G. Malliaras, J.R. Salem, P.J. Brock, C. Scott, Phys. Rev. B 58, 13411–13414 (1998)

    Article  ADS  Google Scholar 

  34. D.R.T. Zahn, G.N. Gavrila, G. Salvan, Chem. Rev. 107, 1161–1232 (2007)

    Article  Google Scholar 

  35. D. Qin, P. Gu, R.S. Dhar, S.G. Razavipour, D. Ban, Phys. Status Solidi A 208, 1967–1971 (2011)

    Article  ADS  Google Scholar 

  36. S.M.B. Ghorashi, A. Behjat, R. Ajeian, Sol. Energ. Mat. Sol. C. 96, 50–57 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support from Science and technology Program of Hebei province (Grant No. E2021202026, 21311401D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dashan Qin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 66 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, X., Feng, S., Liu, W. et al. Improved performance in organic solar cells using aluminum-doped cathode-modifying layer. Appl. Phys. A 127, 581 (2021). https://doi.org/10.1007/s00339-021-04735-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04735-y

Keywords

Navigation