Skip to main content
Log in

Research on FTO/CBD-CdS: Cl thin film photodetector with a vertical structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Correction to this article was published on 19 August 2021

This article has been updated

Abstract

In this work, CdS thin films were deposited on glass/fluorine-doping tin oxide (FTO) substrates by low-cost chemical bath deposition (CBD), followed by annealing with CdCl2-doping (Cl-doping) to fabricate resistive-type photodetectors (PDs) with a vertical structure of glass/FTO/CBD-CdS:Cl/electrode. The effect of annealing with Cl-doping (AwCl) on the various properties of films and the photodetection performance of PDs were systematically characterized by special testing methods. The results revealed that the surface morphology and crystal structure of CBD-CdS:Cl films were improved, accompanied by an enhancement of hexagonal phase (002) crystal plane (wurtzite structure), and the optical bandgap of films can be adjusted between 2.43 and 2.26 eV while the electron activation energy of the films was reduced from 75.9 to 10.3 meV after AwCl. Furthermore, the light responsivity of CBD-CdS:Cl PDs were 0.57, 0.59 and 1.67 A/W under 365, 400 and 530 nm illumination at a bias of −2.0 V, respectively, and the detectivity of photons at corresponding wavelengths were 3.7 × 108, 3.9 × 108 and 1.08 × 109 Jones. Meanwhile, the PDs showed optimized repeatability and improved sensitivity under periodic illumination. The above results demonstrated that the CBD-CdS:Cl PDs with a vertical structure developed in this work had good detection performance at certain characteristic wavelengths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. S. Ren, L.Y. Chang, S.K. Lim, J. Zhao, M. Smith, N. Zhao, V. Bulović, M. Bawendi, S. Gradečak, Nano Lett. 11, 3998 (2011)

    Article  ADS  Google Scholar 

  2. A. Bosio, G. Rosa, N. Romeo, Sol. Energy 175, 31 (2018)

    Article  ADS  Google Scholar 

  3. M.F. Rahman, J. Hossain, A. Kuddus, S. Tabassum, M.H.K. Rubel, H. Shirai, A.B.M. Ismail, Appl. Phys. A Mater. Sci. Process. 126, 1 (2020)

    Article  Google Scholar 

  4. K. Deng, L. Li, Adv. Mater. 26, 2619 (2014)

    Article  Google Scholar 

  5. D. Wu, Y. Jiang, Y. Zhang, Y. Yu, Z. Zhu, X. Lan, F. Li, C. Wu, L. Wang, L. Luo, J. Mater. Chem. 22, 23272 (2012)

    Article  Google Scholar 

  6. G. Gou, G. Dai, C. Qian, Y. Liu, Y. Fu, Z. Tian, Y. He, L. Kong, J. Yang, J. Sun, Y. Gao, Nanoscale 8, 14580 (2016)

    Article  ADS  Google Scholar 

  7. M. Antoniadou, V.M. Daskalaki, N. Balis, D.I. Kondarides, C. Kordulis, P. Lianos, Appl. Catal. B Environ. 107, 188 (2011)

    Article  Google Scholar 

  8. C. Zhu, C. Liu, Y. Fu, J. Gao, H. Huang, Y. Liu, Z. Kang, Appl. Catal. B Environ. 242, 178 (2019)

    Article  Google Scholar 

  9. T. Zhai, X. Fang, L. Li, Y. Bando, D. Golberg, Nanoscale 2, 168 (2010)

    Article  ADS  Google Scholar 

  10. J.H. Lee, D.J. Lee, Thin Solid Films 515, 6055 (2007)

    Article  ADS  Google Scholar 

  11. B. Ullrich, H. Sakai, Y. Segawa, Thin Solid Films 385, 220 (2001)

    Article  ADS  Google Scholar 

  12. J.B. Seon, S. Lee, J.M. Kim, H.D. Jeong, Chem. Mater. 21, 604 (2009)

    Article  Google Scholar 

  13. R.K. Sonker, B.C. Yadav, V. Gupta, M. Tomar, Mater. Chem. Phys. 239, 121975 (2020)

    Article  Google Scholar 

  14. M. Ouafi, B. Jaber, L. Laânab, Superlattices Microstruct. 129, 212 (2019)

    Article  ADS  Google Scholar 

  15. M. Waldiya, R. Narasimman, D. Bhagat, D. Vankhade, I. Mukhopadhyay, Mater. Chem. Phys. 226, 26 (2019)

    Article  Google Scholar 

  16. Z. Makhdoumi-Kakhaki, A.A. Youzbashi, P. Sangpour, N. Naderi, J. Mater. Sci. Mater. Electron. 28, 13727 (2017)

    Article  Google Scholar 

  17. M. Shkir, I.M. Ashraf, A. Khan, M.T. Khan, A.M. El-Toni, S. AlFaify, Sensors Actuators. A Phys. 306, 111952 (2020)

    Google Scholar 

  18. M.A. Baghchesara, R. Yousefi, M. Cheraghizade, F. Jamali-Sheini, A. Saáedi, Ceram. Int. 42, 1891 (2016)

    Article  Google Scholar 

  19. C. Wu, J. Jie, L. Wang, Y. Yu, Q. Peng, X. Zhang, J. Cai, H. Guo, D. Wu, Y. Jiang, Nanotechnology 21 (2010).

  20. P. Maity, S.V. Singh, S. Biring, B.N. Pal, A.K. Ghosh, J. Mater. Chem. C 7, 7725 (2019)

    Article  Google Scholar 

  21. Y. Ye, L. Dai, X. Wen, P. Wu, R. Pen, G. Qin, ACS Appl. Mater. Interfaces 2, 2724 (2010)

    Article  Google Scholar 

  22. M. Shuai, Y. Lingmin, C. Lei, L. Chun, Y. Mingli, F. Xinhui, J. Alloys Compd. 827, 154090 (2020)

    Article  Google Scholar 

  23. H. Zhou, Z. Song, C.R. Grice, C. Chen, J. Zhang, Y. Zhu, R. Liu, H. Wang, Y. Yan, Nano Energy 53, 880 (2018)

    Article  Google Scholar 

  24. T. Sivaraman, V.S. Nagarethinam, A.R. Balu, Res. J. Mater. Sci. CdS 2, 6 (2014)

    Google Scholar 

  25. A. Cortes, H. Gómez, R.E. Marotti, G. Riveros, E.A. Dalchiele, Sol. Energy Mater. Sol. Cells 82, 21 (2004)

    Article  Google Scholar 

  26. L. Wan, Z. Bai, Z. Hou, D. Wang, H. Sun, L. Xiong, Thin Solid Films 518, 6858 (2010)

    Article  ADS  Google Scholar 

  27. N. Maticiuc, J. Hiie, T. Raadik, A. Graf, A. Gavrilov, Thin Solid Films 535, 184 (2013)

    Article  ADS  Google Scholar 

  28. K.E. Nieto-Zepeda, J.G. Quiñones-Galván, K. Rodríguez-Rosales, A. Guillén-Cervantes, J. Santos-Cruz, O. Zelaya-Ángel, F. de Moure-Flores, Optik (Stuttg). 226, 166004 (2021)

    Article  ADS  Google Scholar 

  29. S.M.H. Al-Jawad, Mater. Sci. Semicond. Process. 67, 75 (2017)

    Article  Google Scholar 

  30. M. Tang, P. Xu, Z. Wen, X. Chen, C. Pang, X. Xu, C. Meng, X. Liu, H. Tian, N. Raghavan, Q. Yang, Sci. Bull. 63, 1118 (2018)

    Article  Google Scholar 

  31. S. Dhar, T. Majumder, S.P. Mondal, ACS Appl. Mater. Interfaces 8, 31822 (2016)

    Article  Google Scholar 

  32. G. Luo, Z. Zhang, J. Jiang, Y. Liu, W. Li, J. Zhang, X. Hao, W. Wang, RSC Adv. 11, 7682 (2021)

    Article  ADS  Google Scholar 

  33. L. Goswami, N. Aggarwal, R. Verma, S. Bishnoi, S. Husale, R. Pandey, G. Gupta, ACS Appl. Mater. Interfaces (2020).

  34. Z. Xia, F.X. Yu, S.C. Lu, D.J. Xue, Y.S. He, B. Yang, C. Wang, R.Q. Ding, J. Zhong, J. Tang, Chin. Chem. Lett. 28, 881 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would acknowledge the cooperation project supported by Sichuan University and Luzhou City (2019CDLZ-15) and Sichuan University and Dazhou City (2020CDDZ-04), Science and Technology Achievement Transfer and Transformation Demonstration Project of Sichuan Province (2021ZHCG0004), Laboratory Technology Project of Sichuan University, Research Project of New Century Education and Teaching Reform Project (9th) of Sichuan University, the Science and Technology Project supported by the Sichuan Provincial Human Resources and Social Security Department (Grant No. 2018145-76) and the Fundamental Research Funds for Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanggen Zeng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, Y., Zhou, B. et al. Research on FTO/CBD-CdS: Cl thin film photodetector with a vertical structure. Appl. Phys. A 127, 560 (2021). https://doi.org/10.1007/s00339-021-04704-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04704-5

Keywords

Navigation