Skip to main content
Log in

Synthesis and characterization of CdTe/CdSe thin film on glass/ITO by electrodeposition at room temperature

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, a CdTe thin film was formed on glass/indium tin oxide (ITO) substrate at room temperature using electrodeposition. The film was then annealed at 300°C to investigate its effect on the film’s optical, morphological, structural and electrical properties. A CdSe thin film was then electrodeposited at room temperature on the annealed p-type glass/ITO/CdTe film. The two films were prepared at room temperature without precursors or additives, using very low concentrations of chemicals. This significantly reduces the cost of production and minimizes its environmental impact. The as-deposited and annealed glass/ITO/CdTe thin film and glass/ITO/CdTe/CdSe heterojunction thin film were characterized using UV–vis spectrometer, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction and Hall effect measurement system. The results showed that p-CdTe/n-CdSe heterojunction thin film was nanostructured and polycrystalline. This film can be important for solar cells due to its charge carrier density (1.95 \(\times \) 1020 cm–3), resistivity value (2.42 \(\times \) 10–3 Ω-cm), and appropriate optical bandgap (1.64 eV) meeting the solar spectrum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Zhu H and Lian T 2012 Energy Environ. Sci. 5 9406

    Article  CAS  Google Scholar 

  2. Amin S A, Salim S T, Salam K M A and Galib M A Al 2013 Int. J. Electr. Energy 1 1

  3. Borah M N, Chaliha S, Sarmah P C and Rahman A 2008 J. Optoelectron. Adv. Mater. 10 1333

    CAS  Google Scholar 

  4. Manikandana M, Nisha Francisa P, Dhanuskodia S, Maheswarib N and Muralidharanb G 2018 J. Mater. Sci. Mater. Electron. 29 17397

    Article  Google Scholar 

  5. Tian L, Yang H, Ding J, Li Q, Mu Y and Zhang Y 2014 Curr. Appl. Phys. 14 881

    Article  Google Scholar 

  6. Patil V B, More P D, Sutrave D S, Shahane G S, Mulik R N and Deshmukh L P 2000 Mater. Chem. Phys. 65 282

    Article  CAS  Google Scholar 

  7. Sisman I and Demir U 2011 J. Electroanal. Chem. 651 222

    Article  CAS  Google Scholar 

  8. Oksuzoglu F, Metin Gubur H, Havare A K, Ildan Ozmen S, Unal M and Tozlu C 2020 J. Photonics Energy 10 1

    Article  Google Scholar 

  9. Grätzel M 2006 Nanocrystalline ınjection solar cells (eds) J Poortmans and A Vladimir (Hoboken: John Wiley)

  10. Asim N, Sopian K, Ahmadi S, Saeedfar K, Alghoul M A, Saadatian O et al 2012 Renew. Sustain. Energy Rev. 16 5834

    Article  CAS  Google Scholar 

  11. Mayabadi A, Mirabbaszadeh K, Pawbake A, Rondiya S, Rokade A, Waykar R et al 2017 J. Mater. Sci. Mater. Electron. 28 18745

    Article  CAS  Google Scholar 

  12. Alam S, Pathan M A K, Siddiquee K A M H, Islam A B M O, Gafur M A, Saha D K et al 2013 Optik (Stuttg) 124 2165

    Article  CAS  Google Scholar 

  13. Elango T, Subramanian V and Murali K R 2000 Surf. Coatings Technol. 123 8

    Article  CAS  Google Scholar 

  14. Li C, Wang F, Chen Y, Wu L, Zhang J, Li W et al 2018 Mater. Sci. Semicond. Process. 83 89

    Article  CAS  Google Scholar 

  15. David Kumar M M and Devadason S 2013 Appl. Nanosci. 3 453

    Article  CAS  Google Scholar 

  16. Metin Gubur H, Septekin F, Alpdogan S and Ildan Ozmen S 2018 IOSR J. Appl. Phys. 10 7

    Google Scholar 

  17. Kim S-H, Lee J-Y, Han W-K and Lee J-H 2010 Thin Solid Films 518 7222

    Article  CAS  Google Scholar 

  18. Kim D U, Hangarter C M, Debnath R, Ha J Y, Beauchamp C R, Widstrom M D et al 2013 Solar Cells Sol. Energy Mater. Sol. Cells 109 246

    Article  CAS  Google Scholar 

  19. Luo H, Ma L G, Xie W M, Wei Z L, Gao K G, Zhang F M et al 2016 Appl. Phys. A Mater. Sci. Process. 122 1

    Article  Google Scholar 

  20. Majid F, Malik A, Ata S, Hussain Z, Bibi I, Iqbal M et al 2018 Z. Phys. Chem. 233 1

    Article  Google Scholar 

  21. Ju T, Yang L and Carter S 2010 J. Appl. Phys. 107 104311

    Article  Google Scholar 

  22. Baines T, Zoppi G, Bowen L, Shalvey T P, Mariotti S, Durose K et al 2018 Sol. Energy Mater. Sol. Cells 180 196

    Article  CAS  Google Scholar 

  23. Gurevits J, Bereznev S, Mikli V, Naidu R, Mellikov E and Kois J 2014 Mater. Res. Soc. Symp. Proc. 1707 576

    Article  Google Scholar 

  24. Peksöz A 2016 Uludağ Univ. J. Fac. Eng. 21 1

    Article  Google Scholar 

  25. Li Q, Tian L, Chi K, Yang H, Sun M and Fu W 2013 Appl. Surf. Sci. 270 707

    Article  CAS  Google Scholar 

  26. Abdul-Manaf N A, De Silva D S M, Dharmadasa I M, Salim H I, Kumarasinghe K D M S P K and Pathiratne K A S 2016 Ceylon J. Sci. 45 53

    Article  Google Scholar 

  27. Rajeshwar K 1992 Adv. Mater. 4 23

    Article  CAS  Google Scholar 

  28. Razmjoo O, Bahrololoom M E and Najafisayar P 2017 Ceram. Int. 43 121

    Article  CAS  Google Scholar 

  29. Chévere-Trinidad N L, Gurbuz S, Kramer J and Venkataraman D 2015 Handbook of Nanoelectrochemistry Springer International Publishing p 1

  30. Salim H I, Patel V, Abbas A, Walls M and Dharmadasa I M 2015 J. Mater. Sci. Mater. Electron. 26 3119

    Article  CAS  Google Scholar 

  31. Bocchetta P, Santamaria M and Di Quarto F 2013 Electrochim. Acta 88 340

    Article  CAS  Google Scholar 

  32. Echendu O K, Dejene B F and Hone F G 2018 Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 232235 55

  33. Echendu O K, Fauzi F, Weerasinghe A R and Dharmadasa I M 2014 Thin Solid Films 556 529

    Article  CAS  Google Scholar 

  34. Osuwa J C and Chigbo N I 2012 Chalcogenide Lett. 9 501

    CAS  Google Scholar 

  35. Chauhan K R, Burgess I J, Chang G S and Mukhopadhyay I 2014 J. Electroanal. Chem. 713 70

    Article  CAS  Google Scholar 

  36. Fu W, Liu T, Mu Y, Wang J, Li S, Yang L et al 2015 J. Alloys Compd. 636 97

    Article  Google Scholar 

  37. Joint Committee on Powder Diffraction Standards–JPDS. Inorganic Crystal Structure Database Diffraction Data, PDF Card No: 01-082-0474

  38. Joint Committee on Powder Diffraction Standards–JPDS. Inorganic Crystal Structure Database Diffraction Data, PDF Card No: 03-065-1047

  39. Joint Committee on Powder Diffraction Standards–JPDS. Inorganic Crystal Structure Database Diffraction Data, PDF Card No: 01-079-3179

  40. Joint Committee on Powder Diffraction Standards–JPDS. Inorganic Crystal Structure Database Diffraction Data, PDF Card No: 01-080-0089

  41. Joint Committee on Powder Diffraction Standards–JPDS. Inorganic Crystal Structure Database Diffraction Data, PDF Card No: 01-077-7297

  42. Joint Committee on Powder Diffraction Standards–JPDS. Inorganic Crystal Structure Database Diffraction Data, PDF Card No: 01-080-0090

  43. Joint Committee on Powder Diffraction Standards–JPDS. Inorganic Crystal Structure Database Diffraction Data, PDF Card No: 01-077-7287

  44. Joint Committee on Powder Diffraction Standards–JPDS. Inorganic Crystal Structure Database Diffraction Data, PDF Card No: 01-075-5679

  45. Pankove J and Acque I 1971 Optical processes in semiconductors. (New York: Dover Publications Inc.)

    Google Scholar 

  46. Metin H, Erat S, Arı M and Bozoklu M 2008 Optoelectron. Adv. Mater. Rapid Commun. 2 92

    CAS  Google Scholar 

  47. Miyake M, Murase K, Hirato T and Awakura Y 2004 J. Electroanal. Chem. 562 247

    Article  CAS  Google Scholar 

  48. Segall B, Lorenz M R and Halsted R E 1963 Phys. Rev. 129 2471

    Article  CAS  Google Scholar 

  49. Takahashi M, Uosaki K, Kita H and Yamaguchi S 1986 J. Appl. Phys. 60 2046

    Article  CAS  Google Scholar 

  50. von Windheim J A and Cocivera M 1992 J. Phys. Chem. Solids 53 31

    Article  Google Scholar 

  51. Nishio T, Takahashi M, Wada S, Miyauchi T, Akita K, Goto H et al Electr. Eng. Japan (English Transl. Denki Gakkai Ronbunshi) 164 12

Download references

Acknowledgements

This study was supported by the Research Fund of Mersin University in Turkey with Project Number: 2017-2-TP3-2593.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sevda Ildan Ozmen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozmen, S.I., Gubur, H.M. Synthesis and characterization of CdTe/CdSe thin film on glass/ITO by electrodeposition at room temperature. Bull Mater Sci 45, 77 (2022). https://doi.org/10.1007/s12034-021-02653-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02653-6

Keywords

Navigation