Skip to main content

Advertisement

Log in

Band gap energy of GaBixAs1-x in the As-rich range calculated by the first-principle calculation and the modified BAC model

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The GGA + U method is applied to calculate the lattice constant and the band gap energy of the As-rich GaBixAs1-x alloy. It is found that the lattice constant almost shows a linear increase as the bismuth fraction increases. The calculated band gap energy is consistent with the experimental data. For the sake of depicting the band gap energy, the valence band anticrossing model is modified. After the modification, a wonderful description can be observed. When the bismuth fraction is 0.324, the band gap energy of GaBixAs1-x decreases to 0 eV. The coupling interaction of the bismuth level with the Г valence band maximum (VBM) of GaAs is much stronger than that of the bismuth level with the Г VBM of GaSb because the atom size mismatch and electronegativity difference between bismuth and arsenide atoms are much larger than those between bismuth and antimony atoms. Additionally, reducing the band gap energy is an inevitable behavior of the bismuth fraction in GaAs, while it is only a special behavior of the nitride fraction, which occurs in GaNxAs1-x when the nitride fraction is not large. The element indium should be the best choice to lower the bismuth fraction by introducing another element to achieve that the spin–orbit splitting energy overtakes the band gap energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S. Francoeur, S. Tixier, E. Young, T. Tiedje, A. Mascarenhas, Phys. Rev. B 77, 085209 (2008)

    Article  ADS  Google Scholar 

  2. C.Z. Zhao, M.M. Zhu, J. Wang, S.S. Wang, K.Q. Lu, Superlattice Microst. 117, 515 (2018)

    Article  ADS  Google Scholar 

  3. X. Lu, D.A. Beaton, R.B. Lewis, T. Tiedje, Y. Zhang, Appl. Phys. Lett. 95, 041903 (2009)

    Article  ADS  Google Scholar 

  4. Y. Zhang, A. Mascarenhas, L.W. Wang, Phys. Rev. B 71, 155201 (2005)

    Article  ADS  Google Scholar 

  5. S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, F. Schiettekatte, Appl. Phys. Lett. 82, 2245 (2003)

    Article  ADS  Google Scholar 

  6. C.A. Broderick, M. Usman, S.J. Sweeney, E.P. O’Reilly, Semicond. Sci. Technol. 27, 094011 (2012)

    Article  ADS  Google Scholar 

  7. V. Virkkala, V. Havu, F. Tuomisto, M.J. Puska, Phys. Rev. B 88, 235201 (2013)

    Article  ADS  Google Scholar 

  8. H.X. Deng, J. Li, S.S. Li, H. Peng, J.B. Xia, L.W. Wang, S.H. Wei, Phys. Rev. B 82, 193204 (2010)

    Article  ADS  Google Scholar 

  9. K. Alberi, J. Wu, W. Walukiewicz, K.M. Yu, O.D. Dubon, S.P. Watkins, C.X. Wang, X. Liu, Y.J. Cho, J. Furdyna, Phys. Rev. B 75, 045203 (2007)

    Article  ADS  Google Scholar 

  10. M. Usman, C.A. Broderick, A. Lindsay, E.P. O’Reilly, Phys. Rev. B 84, 245202 (2011)

    Article  ADS  Google Scholar 

  11. M. Masnadi-Shirazi, R.B. Lewis, V. Bahrami-Yekta, T. Tiedje, M. Chicoine, P. Servati, J. Appl. Phys. 116, 223506 (2014)

    Article  ADS  Google Scholar 

  12. J.P. Perdew, M. Levy, Phys. Rev. Lett. 51, 1884 (1983)

    Article  ADS  Google Scholar 

  13. M. Städele, J.A. Majewski, P. Vogl, A. Görling, Phys. Rev. Lett. 79, 2089 (1997)

    Article  ADS  Google Scholar 

  14. I.V. Solovyev, P.H. Dederichs, V.I. Anisimov, Phys. Rev. B 50, 16861 (1994)

    Article  ADS  Google Scholar 

  15. X.Y. Deng, G.H. Liu, X.P. Jing, G.S. Tian, Int. J. Quantum Chem. 114, 468 (2014)

    Article  Google Scholar 

  16. B. P. Bahuguna, R. O. Sharma, and L. K. Saini, AIP Confer. Proc. 1728, 020601 (2016)

  17. W.-H. Wang, G.-Z. Guo, X.-X. Liang, Chin. Phys. B 22, 120205 (2013)

    Article  Google Scholar 

  18. S.B. Zhang, M.L. Cohen, Phys. Rev. B 35, 7604 (1987)

    Article  ADS  Google Scholar 

  19. A.M. Cowley, S.M. Sze, J. Appl. Phys. 36, 3212 (1965)

    Article  ADS  Google Scholar 

  20. C.Z. Zhao, T. Wei, X.D. Sun, S.S. Wang, J. Wang, Appl. Phys. A 125, 145 (2019)

    Article  ADS  Google Scholar 

  21. Y. Zhang, A. Mascarenhas, H.P. Xin, C.W. Tu, Phys. Rev. B 63, 161303 (2001)

    Article  ADS  Google Scholar 

  22. C.Z. Zhao, H.Y. Ren, T. Wei, S.S. Sha, K.Q. Lu, J. Electron. Mater. 47, 4539 (2018)

    Article  ADS  Google Scholar 

  23. C.Z. Zhao, X.T. Li, X.D. Sun, S.S. Wang, J. Wang, J. Electron. Mater. 48, 1599 (2019)

    Article  ADS  Google Scholar 

  24. W. Huang, K. Oe, G. Feng, M. Yoshimoto, J. Appl. Phys. 98, 053505 (2005)

    Article  ADS  Google Scholar 

  25. Z. Batool, K. Hild, T.J.C. Hosea, X. Lu, T. Tiedje, S.J. Sweeney, J. Appl. Phys. 111, 113108 (2012)

    Article  ADS  Google Scholar 

  26. P. Ludewig, Z.L. Bushell, L. Nattermann, N. Knaub, W. Stolz, K. Volz, J. Crys, Growth 396, 95 (2014)

    Article  Google Scholar 

  27. A.R. Mohmad, F. Bastiman, C.J. Hunter, R. Richards, S.J. Sweeney, J.S. Ng, J.P.R. David, Appl. Phys. Lett. 101, 012106 (2012)

    Article  ADS  Google Scholar 

  28. C.Z. Zhao, T. Wei, X.D. Sun, S.S. Wang, K.Q. Lu, J. Wang, J. Electron. Mater. 47, 3897 (2018)

    Article  ADS  Google Scholar 

  29. J. Wang, Y. Zhang, L.W. Wang, Phys. Rev. B 92, 045211 (2015)

    Article  ADS  Google Scholar 

  30. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    Article  ADS  Google Scholar 

  31. R. Kudrawiec, J. Kopaczek, J. Misiewicz, J.P. Petropoulos, Y. Zhong, J.M.O. Zide, Appl. Phys. Lett. 99, 251906 (2011)

    Article  ADS  Google Scholar 

  32. C.A. Broderick, W. Xiong, S.J. Sweeney, E.P. O’Reilly, J.M. Rorison, Semicond. Sci. Technol. 33, 094007 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Nature Science Foundation of China (61874077) the China Scholarship Council (NO. 201809345016)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Zhen Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, CZ., Guo, Y., Wei, T. et al. Band gap energy of GaBixAs1-x in the As-rich range calculated by the first-principle calculation and the modified BAC model. Appl. Phys. A 127, 605 (2021). https://doi.org/10.1007/s00339-021-04703-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04703-6

Keywords

Navigation