Skip to main content
Log in

Composition Dependence of the Band Gap Energy of the Sb-Rich GaBixSb1−x Alloy (0 ≤ x ≤ 0.26) Described by the Modified Band Anticrossing Model

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The impurity–host interaction and the impurity–impurity interaction exist in the Sb-rich GaBixSb1−x alloy. It is found that the effect of impurity–impurity on the band gap energy can be neglected. The impurity–host interaction not only depends on the Bi content, but also on the content of the host material. In order to describe the band gap energy of the Sb-rich GaBixSb1−x, the virtual crystal approximation for conduction band minimum (CBM) and the modified valence band anticrossing model for valence band maximum (VBM) are applied. It is also found that when the Bi content is about 0.259, the band gap energy of GaBixSb1−x becomes 0 eV. In addition, it is found that the Г CBM depending on Bi content is much stronger than that of the Г VBM. It is relative to two factors. One is that the conduction band offset between GaSb and GaBi is much larger than the valence band offset. The other is that the energy difference between the Bi level and the Г VBM of GaSb is very large. The large energy difference usually leads to a weak coupling interaction between the Bi level and the Г VBM of GaSb, thus resulting in weak composition dependence of the Г VBM in the Sb-rich range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Uesugi, N. Marooka, and I. Suemune, Appl. Phys. Lett. 74, 1254 (1999).

    Article  Google Scholar 

  2. C.Z. Zhao, Q. Fu, T. Wei, S.S. Wang, and K.Q. Lu, J. Electron. Mater. 46, 1546 (2017).

    Article  Google Scholar 

  3. P.J. Klar, H. Grüning, W. Heimbrodt, J. Koch, F. Höhnsdorf, W. Stolz, P.M.A. Vicente, and J. Camassel, Appl. Phys. Lett. 76, 3439 (2000).

    Article  Google Scholar 

  4. C.Z. Zhao, T. Wei, X.D. Sun, S.S. Wang, and K.Q. Lu, J. Mater. Sci. Mater. Electron. 27, 550 (2016).

    Article  Google Scholar 

  5. C.Z. Zhao, T. Wei, X.D. Sun, S.S. Wang, and K.Q. Lu, Mater. Sci. Poland 34, 881 (2016).

    Article  Google Scholar 

  6. X. Lu, D.A. Beaton, R.B. Lewis, T. Tiedje, and Y. Zhang, Appl. Phys. Lett. 95, 041903 (2009).

    Article  Google Scholar 

  7. S. Tixier, M. Adamcyk, T. Tiedje, S. Francoeur, A. Mascarenhas, P. Wei, and F. Schiettekatte, Appl. Phys. Lett. 82, 2245 (2003).

  8. M. Usman, C.A. Broderick, A. Lindsay, and E.P. O’Reilly, Phys. Rev. B 84, 245202 (2011).

    Article  Google Scholar 

  9. S.K. Das, T.D. Das, S. Dhar, M. de la Mare, and A. Krier, Infrared Phys. Technol. 55, 156 (2012).

    Article  Google Scholar 

  10. S.K. Das, T.D. Das, and S. Dhar, Semicond. Sci. Technol. 29, 015003 (2014).

    Article  Google Scholar 

  11. J. Kopaczek, R. Kudrawiec, W. Linhart, M. Rajpalke, T. Jones, M. Ashwin, and T. Veal, Appl. Phys. Exp. 7, 111202 (2014).

    Article  Google Scholar 

  12. J. Kopaczek, R. Kudrawiec, W.M. Linhart, M.K. Rajpalke, K.M. Yu, T.S. Jones, M.J. Ashwin, J. Misiewicz, and T.D. Veal, J. Appl. Phys. 103, 261907 (2013).

    Google Scholar 

  13. M.P. Polak, P. Scharoch, and R. Kudrawiec, Semicond. Sci. Technol. 30, 094001 (2015).

    Article  Google Scholar 

  14. M.K. Rajpalke, W.M. Linhart, M. Birkett, K.M. Yu, D.O. Scanlon, J. Buckeridge, T.S. Jones, M.J. Ashwin, and T.D. Veal, Appl. Phys. Lett. 103, 142106 (2013).

    Article  Google Scholar 

  15. M.K. Rajpalke, W.M. Linhart, M. Birkett, K.M. Yu, J. Alaria, J. Kopaczek, R. Kudrawiec, T.S. Jones, M.J. Ashwin, and T.D. Veal, J. Appl. Phys. 116, 043511 (2014).

    Article  Google Scholar 

  16. O. Delorme, L. Cerutti, E. Tournié, and J.-B. Rodriguez, J. Cryst. Growth 477, 144 (2017).

    Article  Google Scholar 

  17. M.K. Rajpalke, W.M. Linhart, K.M. Yu, T.S. Jones, M.J. Ashwin, and T.D. Veal, J. Cryst. Growth 425, 241 (2015).

    Article  Google Scholar 

  18. L. Yue, Y. Zhang, F. Zhang, L. Wang, Y. Zhuzhong, J. Liu, and S. Wang, in Compound Semiconductor Week (CSW) [Includes 28th International Conference on Indium Phosphide & Related Materials (IPRM) & 43rd International Symposium on Compound Semiconductors (ISCS), 2016. IEEE, vol. 1 (2016)

  19. M.P. Polak, P. Scharoch, R. Kudrawiec, J. Kopaczek, M.J. Winiarski, W.M. Linhart, M.K. Rajpalke, K.M. Yu, T.S. Jones, M.J. Ashwin, and T.D. Veal, J. Phys. D Appl. Phys. 47, 355107 (2014).

    Google Scholar 

  20. S.H. Wei and A. Zunger, Phys. Rev. Lett. 76, 664 (1996).

    Article  Google Scholar 

  21. Y.H. Li, X.G. Gong, and S.H. Wei, Phys. Rev. B 71, 245206 (2006).

    Article  Google Scholar 

  22. S.H. Wei and A. Zunger, Phys. Rev. B. 60, 5404 (1996).

    Article  Google Scholar 

  23. M. Masnadi-Shirazi, R.B. Lewis, V. Bahrami-Yekta, T. Tiedje, M. Chicoine, and P. Servati, Appl. Phys. Lett. 116, 223506 (2014).

    Google Scholar 

  24. M.M. Habchi, A.B. Nasr, A. Rebey, and B.E. Jani, Infrared Phys. Technol. 61, 88 (2013).

    Article  Google Scholar 

  25. K. Alberi, J. Wu, W. Walukiewicz, K.M. Yu, O.D. Dubon, S.P. Watkins, C.X. Wang, X. Liu, Y.-J. Cho, and J. Furdyna, Phys. Rev. B 75, 045203 (2007).

    Article  Google Scholar 

  26. Y. Zhang, A. Mascarenhas, and L.W. Wang, Phys. Rev. B 71, 155201 (2005).

    Article  Google Scholar 

  27. C.Z. Zhao, H.Y. Ren, T. Wei, S.S. Wang, and K.Q. Lu, J. Electron. Mater. 47, 4539 (2018).

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Nature Science Foundation of China (61874077, 61504094). Tianjin Research Program of Application Foundation and Advanced Technology (Nos. 15JCYBJC51900, 17JCQNJC02000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan-Zhen Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, CZ., Li, XT., Sun, XD. et al. Composition Dependence of the Band Gap Energy of the Sb-Rich GaBixSb1−x Alloy (0 ≤ x ≤ 0.26) Described by the Modified Band Anticrossing Model. J. Electron. Mater. 48, 1599–1603 (2019). https://doi.org/10.1007/s11664-018-06895-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-06895-9

Keywords

Navigation