Skip to main content
Log in

Microwave-assisted combustion synthesis of soft ferromagnetic spinel MFe2O4 (M = Ni, Mg, Zn) nanoparticles using Citrus limon fruit extract as a fuel

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We report the preparation of soft ferromagnetic spinel MFe2O4 (M = Ni, Mg, Zn) nanoparticles via microwave-assisted combustion synthesis using Citrus limon fruit extract as a fuel. XRD, FTIR, Raman, and EDX studies revealed that phase pure polycrystalline NiFe2O4, MgFe2O4, and ZnFe2O4 having cubic structure were formed when we introduce the desired divalent metal ion during the synthesis. TEM analysis clearly shows that NiFe2O4 and MgFe2O4 samples have spherical shape nanoparticles, while the ZnFe2O4 sample has cube-like nanoparticles with different size distributions. The average size of NiFe2O4, MgFe2O4, and ZnFe2O4 nanoparticles was found to be 10 ± 3 nm, 20 ± 2 nm, and 25 ± 4 nm, respectively. We believe that citrate present in Citrus limon fruit extract and nitrate ions that exist in the reaction medium can act as reductant/oxidant leads to auto-combustion and form crystallized MFe2O4 nanoparticles without further high-temperature calcination. From VSM analysis, the saturation magnetization for NiFe2O4, MgFe2O4, and ZnFe2O4 was found as 10.16 emu/g, 8.69 emu/g, and 4.23 emu/g, respectively. The different saturation magnetization of the MFe2O4 nanoparticles has a strong correlation with the magnetic moment of divalent cations (Ni2+, Mg2+, Zn2+), superexchange of Fe3+ ions between the tetrahedral (A) and the octahedral (B) sites as well as owing to particle size/morphology and impurities. This study offers a facile approach to obtain soft ferromagnetic spinel ferrite nanoparticles with tunable saturation magnetization which may find a wide spectrum of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.E. Sickafus, J.M. Wills, N.W. Grimes, J. Am. Ceram. Soc. 82, 3279–3292 (1999)

    Article  Google Scholar 

  2. D.S. Mathew, R.S. Juang, Chem. Eng. J. 129, 51–65 (2007)

    Article  Google Scholar 

  3. K.K. Kefeni, B.B. Mamba, T.A.M. Msagati, Sep. Purif. Technol. 188, 399–422 (2017)

    Article  Google Scholar 

  4. T.N. Pham, T.Q. Huy, A. Le, RSC Adv. 10, 31622–31661 (2020)

    Article  ADS  Google Scholar 

  5. K.K. Kefeni, T.A.M. Msagati, B.B. Mamba, Mater. Sci. Eng. B 215, 37–55 (2017)

    Article  Google Scholar 

  6. W.S. Galvão, D.M.A. Neto, R.M. Freire, P.B.A. Fechine, Solid State Phenom. 241, 139–176 (2015)

    Article  Google Scholar 

  7. R.S. Mane, V.V. Jadhav, Spinel Ferrite Nanostructures for Energy Storage Devices A volume in Micro and Nano Technologies (Elsevier, Amsterdam, 2020)

    Google Scholar 

  8. A. Šutka, K.A. Gross, Sens. Actuators B Chem. 222, 95–105 (2016)

    Article  Google Scholar 

  9. A. Houbi, Z.A. Aldashevich, Y. Atassi, Z.B. Telmanovna, M. Saule, K. Kubanych, J. Magn. Magn. Mater. 529, 167839 (2021)

    Article  Google Scholar 

  10. H.L. Andersen, M. Saura-Múzquiz, C. Granados-Miralles, E. Canévet, N. Lock, M. Christensen, Nanoscale 10, 14902–14914 (2018)

    Article  Google Scholar 

  11. F.G.D. Silva, J. Depeyrot, A.F.C. Campos, R. Aquino, D. Fiorani, D. Peddis, J. Nanosci. Nanotechnol. 19, 4888–4902 (2019)

    Article  Google Scholar 

  12. P.V. Kovtunenko, Glass Ceram. 54, 143–148 (1997)

    Article  Google Scholar 

  13. D. Wang, J. Zhou, X. Zhou, X. Ke, C. Chen, Y. Wang, Y. Liu, L. Ren, Mater. Lett. 136, 401–403 (2014)

    Article  Google Scholar 

  14. S.A.V. Prasad, M. Deepty, P.N. Ramesh, G. Prasad, K. Srinivasarao, C. Srinivas, K.V. Babu, E.R. Kumar, N.K. Mohan, D.L. Sastry, Ceram. Inter. 44, 10517–10524 (2018)

    Article  Google Scholar 

  15. Z. Huanga, P. Gaoa, H. Zhenga, X. Liu, J. Wend, E.V. Rebrov, Ceram. Inter. 45, 15980–15989 (2019)

    Article  Google Scholar 

  16. D. Carta, M.F. Casula, A. Falqui, D. Loche, G. Mountjoy, C. Sangregorio, A. Corrias, J. Phys. Chem. C 113, 8606–8615 (2009)

    Article  Google Scholar 

  17. A. Sutka, G. Mezinskis, Front. Mater. Sci. 6, 128–141 (2012)

    Article  Google Scholar 

  18. Y. Xu, J. Sherwood, Y. Qin, R.A. Holler, Y. Bao, Nanoscale 7, 12641–12649 (2015)

    Article  ADS  Google Scholar 

  19. S. Diodati, R.I. Walton, S. Mascottoc, S. Gross, Inorg. Chem. Front. 7, 3282–3314 (2020)

    Article  Google Scholar 

  20. A. El-Fadl, A.M. Hassan, M.H. Mahmoud, Tetiana Tatarchuk, I.P. Yaremiy, A.M. Gismelssed, M.A. Ahmed. J. Magn. Magn. Mater. 471, 192−199 (2019)

  21. M.H. Mahmoud, A.M. Elshahawy, S.A. Makhlouf, H.H. Hamdeh, J. Magn. Magn. Mater. 343, 21–26 (2013)

    Article  ADS  Google Scholar 

  22. M. Sertkol, Y. Koseoglu, A. Baykal, H. Kavas, A. Bozkurt, M.S. Toprak, J. Alloys Compd. 486, 325–329 (2009)

    Article  Google Scholar 

  23. Y. Köseoglu, J. Supercond. Nov. Magn. 26, 1391–1396 (2013)

    Article  Google Scholar 

  24. M. Sertkol, Y. Köseoğlu, A. Baykal, H. Kavas, M.S. Toprak, J. Magn. Magn. Mater. 322, 866–871 (2010)

    Article  ADS  Google Scholar 

  25. M. Venkatesh, G.S. Kumar, S. Viji, S. Karthi, E.K. Girija, Mod. Electron. Mater. 2, 74–78 (2016)

    Article  Google Scholar 

  26. G.S. Kumar, J. Akbar, R. Govindan, E.K. Girija, M. Kanagaraj, J. Sci. Adv. Mater. Dev. 1, 282–285 (2016)

    Google Scholar 

  27. I. Bilecka, M. Niederberger, Nanoscale 2, 1358–1374 (2010)

    Article  ADS  Google Scholar 

  28. P.A. Sajid, S.S. Chetty, S. Praneetha, A.V. Murugan, Y. Kumar, L. Periyasamy, RSC Adv. 6, 103482–103490 (2016)

    Article  ADS  Google Scholar 

  29. M.V. Sujitha, S. Kannan, Spectrochim Acta A Mol. Biomol. Spectrosc. 102, 15–23 (2013)

    Article  ADS  Google Scholar 

  30. T.C. Prathna, N. Chandrasekaran, A. Raichur, A. Mukherjee, Colloids Surf. B Biointerfaces 82, 152–159 (2011)

    Article  Google Scholar 

  31. U. Shafqat, A. Hussain, J. Ali, K. Rehman, A. Ullah, Middle-East J. Sci. Res. 12, 1085–1091 (2012)

    Google Scholar 

  32. V. Nour, I. Trandafir, M.E. Ionica, Not. Bot. Horti Agrobotanici Cluj. 38, 44–48 (2010)

    Google Scholar 

  33. K.L. Penniston, S.Y. Nakada, R.P. Holmes, D.G. Assimos, J Endourol. 22, 567–570 (2008)

    Article  Google Scholar 

  34. N. Martí, P. Mena, J.A. Cánovas, V. Micol, D. Saura, Natural Product Commun. 4, 677–700 (2009)

    Article  Google Scholar 

  35. E.N. Baker, H.M. Baker, B.F. Anderson, R.D. Reeves, Inorg. Chim. Acta 78, 281–285 (1983)

    Article  Google Scholar 

  36. R.E. Hamm, C.M. Shull Jr., D.M. Grant, J. Am. Chem. Soc. 76, 2111–2114 (1954)

    Article  Google Scholar 

  37. R. Jenkins, R.L. Snyder, Introduction to X-Ray Powder Diffractometry (John Wiley & Sons, New York, 1996)

    Book  Google Scholar 

  38. Y.M. Mos, A.C. Vermeulen, C.J.N. Buisman, J. Weijma, Geomicrobiology J. 35, 511–517 (2018)

    Article  Google Scholar 

  39. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds Part B: Applications in Coordination, Organometallic and Bioinorganic Chemistry (John Wiley & Sons, New York, 2009)

    Google Scholar 

  40. Y. Li, J. Shen, Y. Hu, S. Qiu, G. Min, Z. Song, Z. Sun, C. Li, Ind. Eng. Chem. Res. 54, 9750–9757 (2015)

    Article  Google Scholar 

  41. P. Vashishta, J. Mahanty, J. Proc. Phy. Soc. 84, 309–312 (1964)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Govindan Suresh Kumar or Myunghee Kim.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suresh Kumar, G., Srinivasan, R., Karunakaran, G. et al. Microwave-assisted combustion synthesis of soft ferromagnetic spinel MFe2O4 (M = Ni, Mg, Zn) nanoparticles using Citrus limon fruit extract as a fuel. Appl. Phys. A 127, 546 (2021). https://doi.org/10.1007/s00339-021-04694-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04694-4

Keywords

Navigation