Skip to main content
Log in

One-dimensional variable range charge carrier hopping in polyaniline–tungsten oxide nanocomposite-based hydrazine chemiresistor

  • Published:
Applied Physics A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Low-temperature direct current charge transport mechanism of charge carriers in polyaniline–tungsten oxide (PAN-WO3) nanocomposite has been investigated. Charge transport in pristine PAN was found to govern by Mott’s three-dimensional variable range hopping (3-D VRH) model. However, the inclusion of WO3 in nanocomposite shifts the dimension of hopping from 3-D to 1-D. The room-temperature conductivity of PAN-WO3 nanocomposite (5.55 × 10–3 S/cm) was also found to be enhanced compared to pristine PAN (1.27 × 10–5 S/cm). The reasons for crossover in hopping dimensionality and enhanced conductivity of PAN-WO3 nanocomposite have been explained in terms of Mott’s parameters, i.e., small hopping radius, lower hopping energy, high inter-chain distance, and prominent intra-chain transport. Furthermore, PAN-WO3 exhibited enhanced reversible sensing behaviour (27%) towards 10 parts per million of hydrazine at room temperature compared to that of pristine PAN (12%). Enhanced sensing characteristics of PAN-WO3 nanocomposite can be attributed to its higher conductivity and prominent intra-chain unidirectional charge transport. Present communication opens a new window for energy-saving, eco-friendly, cost-effective, recoverable and reproducible, easily processable and efficient PAN-WO3 nanocomposite-based hydrazine detecting device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V. Chaudhary, A. Kaur, RSC Adv. 5, 73535 (2015)

    Article  ADS  Google Scholar 

  2. R. Bahru, M.F.M.A. Zamri et al., J. Mater. Sci. Mater. Electron. 31, 1574–1584 (2020)

    Article  Google Scholar 

  3. P. Jisha, M.S. Suma et al., J. Mater. Sci. Mater. Electron. 32, 11243–11263 (2021)

    Article  Google Scholar 

  4. V. Chaudhary, A. Royal et al., Nanotechnol. Environ. Eng. 6, 8 (2021)

    Article  Google Scholar 

  5. Y. Cao, A.E. Kovalev, R. Xiao, J. Kim, T.S. Mayer, T.E. Mallouk, Nano Lett. 8, 4563 (2008)

    Google Scholar 

  6. S. Amlathe, V.K. Gupta, Analyst 113, 1481 (1988)

    Article  ADS  Google Scholar 

  7. S. Peng, M.T. Sheldon, W. Liu, A.J. Botero, W.A. Goddard III., H.A. Atwater, Appl. Phys. Lett. 106, 023102 (2015)

    Article  ADS  Google Scholar 

  8. G. Choudhary, H. Hansen, Chemosphere 37, 801 (1998)

    Article  ADS  Google Scholar 

  9. S. Virji, J. Huang, R.B. Kaner, B.H. Weiller, Nano Lett. 4(3), 491 (2004)

    Article  ADS  Google Scholar 

  10. S. Virji, R.B. Kaner, B.H. Weiller, Chem. Mater. 17(5), 1256 (2005)

    Article  Google Scholar 

  11. S. Shukla, S. Chaudhary, A. Umar, G.R. Chaudhary, S.K. Mehta, Sens. Actuators B 196, 231 (2014)

    Article  Google Scholar 

  12. K.P. Sambaevam, S. Mohamad, S.W. Phang, Mater. Sci. Semicond. Process. 33, 24 (2015)

    Article  Google Scholar 

  13. A. Safavi, Talanta 58, 785 (2002)

    Article  Google Scholar 

  14. A. Umar, M. Abaker, M. Faisal, S.W. Hwang, S. Baskoutas, S.A. Al-Sayari, J. Nanosci. Nanotechnol. 11, 3474 (2011)

    Article  Google Scholar 

  15. H.R. Zare, N. Nasirizadeh, Electrochim. Acta 52, 4153 (2007)

    Article  Google Scholar 

  16. L. Zheng, J. Song, Sens. Actuators B 135, 650 (2009)

    Article  Google Scholar 

  17. J. Zhang, J. Tu, G. Du, Z. Dong, Y. Wu, L. Chang, D. Xie, G. Cai, X. Wang, Sol. Energy Mater. Sol. Cells 114, 31 (2013)

    Article  ADS  Google Scholar 

  18. A.B. Puthirath, S.M. Raman, S.J. Varma, S. Jayalekshmi, Appl. Phys. Lett. 108, 161901 (2016)

    Article  ADS  Google Scholar 

  19. H.P. Klug, L.E. Alexander, X-Ray Diffraction Procedures (Wiley, New York, 1974)

    MATH  Google Scholar 

  20. S. Bhadra, D. Khastgir, Polym. Gegrad. Stab. 92, 1824 (2007)

    Article  Google Scholar 

  21. K. Dutta, S.K. De, J. Phys. D Appl. Phys. 40, 734 (2007)

    Article  ADS  Google Scholar 

  22. R. Singh, R.P. Tandon, S. Chandra, J. Appl. Phys. 70, 243 (1991)

    Article  ADS  Google Scholar 

  23. R. Pal, S.L. Goyal, V. Gupta, I. Rawal, ChemistrySelect 4, 9194 (2019)

    Article  Google Scholar 

  24. K.P. Maity et al., J. Phys. D Appl. Phys. 53, 125303 (2020)

    Article  ADS  Google Scholar 

  25. V. Chaudhary, H. Singh et al., Polym. Int 66, 699–704 (2017)

    Article  Google Scholar 

  26. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, 2nd edn. (Clarendon Press, Oxford, 1979)

    Google Scholar 

  27. V. Chaudhary, Polymer-Plastics Technology and Materials. https://doi.org/10.1080/25740881.2021.1912095.

  28. T.A. Skothim, R. Elenbaumer, J.R. Reynolds, Handbook of Conducting Polymers (Dekker, New York, 1998)

    Google Scholar 

  29. C.S.S. Sangeeth, P. Jiménez, A.M. Benito, W.K. Maser, R. Menon, J. Appl. Phys. 107, 103719 (2010)

    Article  ADS  Google Scholar 

  30. Z.H. Wang, H.H.S. Javadi, A. Ray, A.G. MacDarmid, A.J. Epstein, Phys. Rev. B 42, 5411 (1990)

    Article  ADS  Google Scholar 

  31. A. Singh, A. Joshi, S. Samanta, A.K. Debnath, D.K. Aswal, S.K. Gupta, J.V. Yakhmi, Appl. Phys. Lett. 95, 202106 (2009)

    Article  ADS  Google Scholar 

  32. S. Mridha, D. Basak, Appl. Phys. Lett. 92, 142111 (2008)

    Article  ADS  Google Scholar 

  33. C. B. Lim, J. B. Yu, D. Y. Kim, H. G. Byun, D. K. Lee, and J. S. Huh, IEEE Sensors, 695 (2006).

  34. L. Jiang, H. Jun, Y. Hoh, J. Lim, D. Lee, J. Huh, Sensors and Actuators B 105, 132 (2005)

    Article  Google Scholar 

  35. V. Chaudhary, A. Kaur, Polym. Int. 64, 1475 (2015)

    Article  Google Scholar 

  36. V. Chaudhary, A. Kaur, J. Ind. Eng. Chem. 26, 143 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Author wish to acknowledge Department of Science and Technology, Government of India and Vice chancellor, university of Delhi, Delhi, India for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishal Chaudhary.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, V. One-dimensional variable range charge carrier hopping in polyaniline–tungsten oxide nanocomposite-based hydrazine chemiresistor. Appl. Phys. A 127, 536 (2021). https://doi.org/10.1007/s00339-021-04690-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04690-8

Keywords

Navigation