Skip to main content
Log in

Enhancing thermal, viscoelastic, and optical properties of biodegradable fullerene(C60)/agarose/chitosan composite films for biotechnology

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Chitosan/agarose composite polymer (CS-AG) has been used extensively in the biomedical applications. In this report, fullerene (C60) was successfully incorporated into CS-AG to investigate its influence on structural, thermal, viscoelastic, and optical properties. Structure analysis performed by XRD and FTIR confirmed an increase in the amorphous structure on the account of the crystalline structure and formation of additional strengthened chemical bonds between CS and AG in the developed CS-based composite film. Blending AG with CS resulted in an improved thermal stability and provided ability for safely heat treatment up to 180 °C. The thermal kinetic parameters were estimated by following Coats−Redfern method which confirmed effective influences of AG and fullerene on the thermal stability of CS-based composite films. In addition, fullerene-loaded CS-based composite films represented improved viscoelastic properties with enhanced glass transition temperature Tg (194.2 °C). Moreover, transmittance of fullerene-loaded CS-based composite film was decreased from 80% for CS to 40%, while reflectance and refractive index are clearly increased. The estimated optical energy band gap was decreased from 5.49 to 5.33 eV. Finally, blinding with AG and incorporating with fullerene provided improved thermal stability, enhanced viscoelastic, and optical properties for CS-based composite polymer. This type of advanced polymer is distinguished by the presence of fullerene loaded to the developed CS/AG for possible biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.A. Lebedeva, T.W. Chamberlain, A.N. Khlobystov, Harnessing the synergistic and complementary properties of fullerene and transition-metal compounds for nanomaterial applications. Chem. Rev. 115(20), 11301–11351 (2015)

    Article  Google Scholar 

  2. C. Chaenyung et al., Carbon-based nanomaterials: multifunctional materials for biomedical engineering. ACS Nano. 7(4), 2891–2897 (2013)

    Article  Google Scholar 

  3. Coq Bernard et al., Fullerene-based materials as new support media in heterogeneous catalysis by metals. Appl. Catal. A General 173(2), 175–183 (1998)

    Article  Google Scholar 

  4. D. M. Guldi, N. Martin, Fullerenes: from synthesis to optoelectronic properties 4(2), 51–79 (2013)

  5. A. Cravino, N.S. Sariciftci, Double-cable polymers for fullerene based organic optoelectronic applications. J. Mater. Chem. 12(7), 1931–1943 (2002)

    Article  Google Scholar 

  6. B.C. Thompson and J.M.J. Frechet, Polymer-fullerene composite solar cells, Angewandte Chemie (International ed. in English) 47(1), 58–77 (2008)

    Article  Google Scholar 

  7. J. Coro et al., Fullerene applications in fuel cells: a review. Int. J. Hydrog. Energy 41(40), 17944–17959 (2016)

    Article  Google Scholar 

  8. J. Lee et al., Application of fullerene-added nano-oil for lubrication enhancement in friction surfaces. Tribology Int. 42(3), 440–447 (2009)

    Article  Google Scholar 

  9. L. i. Mu, R. L. Sprando, Application of nanotechnology in cosmetics. Pharmaceutical Research 27(8), 1746–1749 (2010)

    Article  Google Scholar 

  10. R. Bakry et al., Medicinal applications of fullerenes. Int. J Nanomed. 2(4), 639–639 (2007)

    Google Scholar 

  11. S. Bosi et al., Fullerene derivatives: an attractive tool for biological applications. Euro. J Med. Chem. 38(11–12), 913–923 (2003)

    Article  Google Scholar 

  12. P.J.F. Harris, Fullerene polymers: a brief review. J Carbon Res. 6(4), 71 (2020)

    Article  Google Scholar 

  13. S. Delpeux, F. Beguin, R. Benoit, R. Erre, N. Manolova, I. Rashkov, Fullerene core star-like polymers, Preparation from fullerenes and monoazidopolyethers. Euro. Poly. J 34, 905–915 (1998)

    Article  Google Scholar 

  14. S. Bertho, I. Haeldermans, A. Swinnen, W. Moons, T. Martens, L. Lutsen, A. Bonfiglio, Influence of thermal ageing on the stability of polymer bulk heterojunction solar cells. Sol. Energy Mater. Sol. Cells 91, 385–389 (2007)

    Article  Google Scholar 

  15. Y.J. Cheng, C.H. Hsieh, P.J. Li, C.S. Hsu, Morphological stabilization by in situ polymerization of fullerene derivatives leading to efficient, thermally stable organic photovoltaics. Advance. Funct. Mater. 21, 1723–1732 (2011)

    Article  Google Scholar 

  16. J. Zhao, A. Swinnen, G. Van Assche, J. Manca, D. Vanderzande, B.V. Mele, Phase diagram of P3HT/ PCBM blends and its implication for the stability of morphology. J Phy. Chem. B 113, 1587–1591 (2009)

    Article  Google Scholar 

  17. J.P. Phillips, X. Deng, R.R. Stephen, E.L. Fortenberry, M.L. Todd, D.M. McClusky, T.E. Long, Nano-and bulk-tack adhesive properties of stimuli-responsive, fullerene–polymer blends, containing polystyrene-block-polybutadiene-block-polystyrene and polystyrene-block-polyisoprene-block-polystyrene rubber-based adhesives. Polymer 48, 6773–6781 (2007)

    Article  Google Scholar 

  18. Z. Jiang, H. Zhang, Z. Zhang, H. Murayama, K. Okamoto, Improved bonding between PAN-based carbon fibers and fullerene-modified epoxy matrix. Compos. A Appl. Sci. Manuf. 39, 1762–1767 (2008)

    Article  Google Scholar 

  19. T.H. Goswami, B. Nandan, S. Alam, G.N. Mathur, A selective reaction of polyhydroxy fullerene with cycloaliphatic epoxy resin in designing ether connected epoxy star utilizing fullerene as a molecular core. Polymer 44, 3209–3214 (2003)

    Article  Google Scholar 

  20. Y. Shigemitsu, M. Kaneko, Y. Tajima, K. Takeuchi, Efficient acetalization of epoxy rings on a fullerene cage. Chem. Lett. 33, 1604–1605 (2004)

    Article  Google Scholar 

  21. T. Ogasawara, Y. Ishida, T. Kasai, Mechanical properties of carbon fiber/fullerene-dispersed epoxy composites. Composites Science and Technology 69, 2002–2007 (2009)

    Article  Google Scholar 

  22. H.C. Li, K.K. Rao, J.Y. Jeng, Y.J. Hsiao, T.F. Guo, Y.R. Jeng, T.C. Wen, Nano-scale mechanical properties of polymer/fullerene bulk hetero-junction films and their influence on photovoltaic cells. Sol. Energy Mater. Sol. Cells 95(11), 2976–2980 (2011)

    Article  Google Scholar 

  23. Y. Wang, S. Ding, M. Gong, S. Xu, W. Xu, C. Zhang, Diffusion characteristics of agarose hydrogel used in diffusive gradients in thin films for measurements of cations and anions Anal. Chem. Acta 945, 47–56 (2016)

    Article  Google Scholar 

  24. M. Gericke, T. Heinze, Homogeneous tosylation of agarose as an approach toward novel functional polysaccharide materials. Carbohydate Polymer. 127, 236–245 (2015)

    Article  Google Scholar 

  25. D. W. Hutmacher, J. C. H. Goh, S. H. Teoh, An introduction to biodegradable materials for tissue engineering applications. Ann. Acad. Med. Singap. 30(2), 183–191 (2001)

    Google Scholar 

  26. S.B. Şentürk, D. Kahraman, C. Alkan, İ Gökçe, Biodegradable PEG/cellulose, PEG/agarose and PEG/chitosan blends as shape stabilized phase change materials for latent heat energy storage. Carbohydrate. Polymer. 84(1), 141–144 (2011)

    Article  Google Scholar 

  27. M. Tabata, T. Shimoda, K. Sugihara, D. Ogomi, T. Serizawa, M. Akashi, Osteoconductive and hemostatic properties of apatite formed on/in agarose gel as a bone-grafting material. J Biomed. Mater. 67(2), 680–688 (2003)

    Article  Google Scholar 

  28. A. Awadhiya, D. Kumar, V. Verma, Crosslinking of agarose bioplastic using citric acid. Carbohydrate. Polymer. 151, 60–67 (2016)

    Article  Google Scholar 

  29. G. Yuan, X. Chen, D. Li, Chitosan films and coatings containing essential oils: the antioxidant and antimicrobial activity and application in food systems. Food Res. Int. 89, 117–128 (2016)

    Article  Google Scholar 

  30. Z. Cao, R.J. Gilbert, W. He, Simple Agarose-chitosan gel composite system for enhanced neuronal growth in three dimensions. Biomacromolecules 10, 2954–2959 (2009)

    Article  Google Scholar 

  31. B. Li, C.L. Shan, Q. Zhou et al., Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Marine Drugs. 11, 1534–1552 (2013)

    Article  Google Scholar 

  32. M. Hajiabbas, S. Mashayekhan, A. Nazaripouya, Chitosan-gelatin sheets as scaffolds for muscle tissue engineering. Artificial Cells Nanomed. Biotechnol. 43, 124–132 (2015)

    Article  Google Scholar 

  33. W. Cao, A. Wang, D. Jing et al., Novel biodegradable films and scaffolds of chitosan blended with poly(3-hydroxybutyrate). J Biomater. Sci. Polym. Ed. 16, 1379–1394 (2005)

    Article  Google Scholar 

  34. V.V. Perez, Synthesis of Highly Quenching Fullerene Derivatives for Biosensor Applications. Department of Chemistry, Massachusetts Institute of Technology, 5–17, 2004 (Master thesis)

  35. S. Zhang, G. Wright, Y. Yang, Materials and techniques for electrochemical biosensor design and construction. Biosens Bioelectron. 15, 273–282 (2000)

    Article  Google Scholar 

  36. J. Davis, H. Vaughan, M.F. Cardosi, Elements of biosensor construction. Enzyme Microb. Technol. 17, 1030–1035 (1995)

    Article  Google Scholar 

  37. V. Perumal, U. Hashim, Advances in biosensors: Principle, architecture and applications. J Appl. Biomed. 12, 1–15 (2014)

    Article  Google Scholar 

  38. A. Badawi, E.M. Ahmed, N.Y. Mostafa, F. Abdel-Wahab, S.E. Alomairy, Enhancement of the optical and mechanical properties of chitosan using Fe 2 O 3 nanoparticles. J Mater. Sci. Mater. Electron. 28(15), 10877–10884 (2017)

    Article  Google Scholar 

  39. A.M. Hassanien, A.A. Atta, A.A. Ward, E.M. Ahmed, A. Alsubaie, M.M. El-Nahass, T. Altalhi, Investigation of structural, electrical and optical properties of chitosan/fullerene composites. Mater. Res. Express 6(12), 125304 (2019)

    Article  ADS  Google Scholar 

  40. E. M. Ahmed, D. Saber, Kh. Abd ElAziz, A. H Alghtani, B. F. Felemban., H. T. Ali, M. Megahed, Chitosan-based nanocomposites: preparation and characterization for food packing industry. Mater. Res. Express. 8(2), 25017 (2021)

    Article  Google Scholar 

  41. A.W. Coats, J.P. Redfern, Scholarly articles for kinetic parameters from thermogravimetric data. Nature 201, 68 (1964)

    Article  ADS  Google Scholar 

  42. N.G. Madian, N. Mohamed, Enhancement of the dynamic mechanical properties of chitosan thin films by crosslinking with greenly synthesized silver nanoparticles. J Mater. Res Tech 9(6), 12970–12975 (2020)

    Article  Google Scholar 

  43. M.M. Abdi, H.E. Mahmud, A. Kassim, W.M.M. Yunus, Z.A. Talib, M.J. Haron, Synthesis and characterization of a new conducting polymer composite. Polym. Sci. Ser. B 52(11–12), 662–9 (2010)

    Article  Google Scholar 

  44. L. Sun, J. Sun, L. Chen, P. Niu, X. Yang, Y. Guo, Preparation and characterization of chitosan film incorporated with thined young apple polyphenols as an active packaging material. Carbohydr. Polymer 163, 81–91 (2017)

    Article  Google Scholar 

  45. M. Martinez-Gomez, A. Quinto-Hernandez, N.S. Flores-Garcia, J. Mayén, M. Dominguez-Diaz, H. Martinez et al., Electrophoretic deposition of chitosan films doped with Nd2Ti2O7 nanoparticles as protective coatings against corrosion in saline solutions. Int. J. Polym. Sci. 2019, 1–17 (2019)

    Article  Google Scholar 

  46. H. Jafari, M. Pirouzifard, M.A. Khaledabad, H. Almasi, Effect of chitin nanofiber on the morphological and physical properties of chitosan/silver nanoparticle bionanocomposite films. Int. J Biol. Macromol. 92, 461–6 (2016)

    Article  Google Scholar 

  47. S.B. Aziz, O.G. Abdullah, M.A. Rasheed, H.M. Ahmed, Effect of high salt concentration (HSC) on structural, morphological, and electrical characteristics of chitosan based solid polymer electrolytes. Polymers 9(6), 187 (2017)

    Article  Google Scholar 

  48. M. Timur, A. Pasa, Synthesis, characterization, swelling, and metal uptake studies of aryl cross-linked chitosan hydrogels. ACS Omega 3(12), 17416–24 (2018)

    Article  Google Scholar 

  49. H.F.G. Barbosa, D.S. Francisco, A.P.G. Ferreira, É.T.G. Cavalheiro, A new look towards the thermal decomposition of chitins and chitosans with different degrees of deacetylation by coupled TG-FTIR. Carbohydr. Polym. 225, 115232 (2019)

    Article  Google Scholar 

  50. J. Tantala, K. Thumanu, C. Rachtanapun, An assessment of antibacterial mode of action of chitosan on Listeria innocua cells using real-time HATR-FTIR spectroscopy. Int. J Biol. Macromol. 135, 386–393 (2019)

    Article  Google Scholar 

  51. C. Branca, K. Khouzami, U. Wanderlingh, G. D’Angelo, Effect of intercalated chitosan/clay nanostructures on concentrated pluronic F127 solution: a FTIR-ATR, DSC and rheological study. J Coll. Interf. Sci. 517, 221–229 (2018)

    Article  ADS  Google Scholar 

  52. H. Kuzmany, J. Winter, in the Physics of Fullerenes and Related Materials, ed. by W. Andreoni (World Scientific, Singapore, 2000), p. 208

    Google Scholar 

  53. H. Kuzmany, R. Winkler, R. Pichler, Infrared spectroscopy of fullerenes. J Phy. Condens. Matter 7(33), 6601 (1995)

    Article  ADS  Google Scholar 

  54. E. Kızılkonca, E. Torlakb, B. Erim, Preparation and characterization of antibacterial nano cerium oxide/chitosan/hydroxyethylcellulose/polyethylene glycol composite films. Int. J. Biol. Macromol. 177, 351–359 (2021)

    Article  Google Scholar 

  55. S. Affes, R. Nasri, S. Li, T. Thami, A. Van Der Lee, M. Nasri, H. Maalej, Effect of glucose-induced Maillard reaction on physical, structural and antioxidant properties of chitosan derivatives-based films. Carbohydr. Polym. 255, 117341 (2021)

    Article  Google Scholar 

  56. P.M. Madhusudanan, K. Krishnan, K.N. Ninan, New approximation for the p(x) function in the evaluation of non-isothermalkinetic data. Thermochimica Acta 97, 189–201 (1986)

    Article  Google Scholar 

  57. N.E. Suyatma, L. Tighzert, A. Copinet, V. Coma, Effects of hydrophilic plasticizers on mechanical, thermal, and surface properties of chitosan films. J Agric. Food Chem. 53, 3950 (2005)

    Article  Google Scholar 

  58. R.M. Felfel, M.J. Gideon-Adeniyi, K.M.Z. Hossain, G.A.F. Roberts, D.M. Grant, Structural, mechanical and swelling characteristics of 3D scaffolds from chitosan-agarose blends. Carbohydr. Polym. 204, 59–67 (2019)

    Article  Google Scholar 

  59. S.-Q. Teng, Z.-G. Jiang, Z.-B. Qiu, Crystallization behavior and dynamic mechanical properties of Poly(ε-caprolactone)/Octaisobutyl-Polyhedral oligomeric silsesquioxanes composites prepared via different methods. Chin. J. Polym. Sci. 38, 158–163 (2020)

    Article  Google Scholar 

  60. F. Al-Sagheer, S. Muslim, Thermal and mechanical properties of Chitosan/SiO2 hybrid composites. J. Nanobiotechnol. 2010 (2010)

  61. J. Khouri, A. Penlidis, C. Moresoli, Viscoelastic Properties of Crosslinked Chitosan Films. Processe 7, 157 (2019)

    Article  Google Scholar 

  62. C.G. Flores-Hernández, A. Colin-Cruz, C. Velasco-Santos, V.M. Castaño, A. Almendarez-Camarillo, I. Olivas-Armendariz, A.L. Martínez-Hernández, Chitosan–starch–keratin composites: improving thermo-mechanical and degradation properties through chemical modification. J Polym. Environ. 26(5), 2182–2191 (2018)

    Article  Google Scholar 

  63. V. Krongauz, Diffusion in Polymers Dependence on Crosslink Density. J Therm. Anal. Calorim. 102, 435–445 (2010)

    Article  Google Scholar 

  64. I. Jessop, J. Albornoz, O. Ramírez, B. Durán, L. Molero, S. Bonardd, C. Saldías, Optical, morphological and photocatalytic properties of biobased tractable films of chitosan/donor-acceptor polymer blends. Carbohydr. Polym. 249, 11682 (2020)

    Article  Google Scholar 

  65. N. Izaguirre, O. Gordobil, E. Robles, J. Labidi, Enhancement of UV absorbance and mechanical properties of chitosan films by the incorporation of solvolytically fractionated lignins. Int. J Biol. Macromol. 155, 447–455 (2020)

    Article  Google Scholar 

Download references

Acknowledgment

Taif University Researchers Supporting Project number (TURSP-2020-/84), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emad M. Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, E.M. Enhancing thermal, viscoelastic, and optical properties of biodegradable fullerene(C60)/agarose/chitosan composite films for biotechnology. Appl. Phys. A 127, 481 (2021). https://doi.org/10.1007/s00339-021-04635-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04635-1

Keywords

Navigation