Skip to main content
Log in

Experimental study of properties of TiO2 thin films deposited by spray pyrolysis for future sensory applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this present work, we have studied the effect of organic solvents and acetylacetone (Acac) molar ratio on several properties of TiO2 thin films prepared by pneumatic spray pyrolysis (SP). The TiO2 thin films were characterized by the following techniques including the following: X-ray diffraction (XRD), Raman spectroscopy, Scanning Electron Microscopy (SEM) and UV–visible spectrophotometer. The XRD results showed pure anatase TiO2 thin films with preferential orientation (101) plan, the crystallite size varying between 14.72 and 35.12 nm. The Raman spectroscopy confirmed the formation of the only phase of TiO2 (anatase). The morphological properties were investigated by SEM. The UV–Visible spectrophotometer showed the semiconducting properties of anatase TiO2, and the optical band gap was ranged between 3.17–3.34 eV. The refraction index, the extinction coefficient and the porosity were estimated using transmittance values. The TiO2 thin films have had good properties. They were prepared by low-cost technique, spray pyrolysis, by saving energy and time because the samples were synthesized using air pulverization without using any oxygen sources and without any annealing requires the following: CVD room, low pressure and more time for annealing (Sahoo et al. 2019 in Phys Chem Chem Phys 21: 6198–6206).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Sahoo, A.K. Yadav, S. Ghosh, S.N. Jha, D. Bhattacharyya, T. Mathews, Phys. Chem. Chem. Phys. 21, 6198–6206 (2019). https://doi.org/10.1039/C8CP06811A

    Article  Google Scholar 

  2. S. Kirchner, J.F. Arenes, C. Cochet, M. Derbez, C. Duboudin, P. Elias, A. Gregoire, B. Jedor, J.P. Lucas, N. Pasquier, M. Pigneret, O. Ramalho, Campagne Nationale Logements: Etat de la Qualite de l’air dans les Logements Français rapport final (Observatory on indoor air quality national survey: indoor air quality in French dwellings, 2007). http://oqai.fr. Accessed 26 May 2007

  3. P. Yoboué, P. Kouakou, A. Kamagaté, P. Menini, F. Mesnilgrente, V. Conédéra, N. Fabre, Int. J. Mater. Eng. Technol. 55–66 (2019) (Pushpa Publishing House)

  4. R. Godbole, V.P. Godbole, P.S. Alegaonkar, S. Bhagwat, New J. Chem. 41(20), 11807–11816 (2017). https://doi.org/10.1039/C7NJ00963A

    Article  Google Scholar 

  5. M.A. Han, H.J. Kim, H.C. Lee, J.-S. Park, H.-N. Lee, Appl. Surf. 481, 133–137 (2019). https://doi.org/10.1016/j.apsusc.2019.03.043

    Article  ADS  Google Scholar 

  6. Y.N. Colmenares, W. Correr, B.S. Lima, V.R. Mastelaro, Thin solid film 703, 137975 (2020). https://doi.org/10.1016/j.tsf.2020.137975

    Article  ADS  Google Scholar 

  7. J.H. Kim, S. Lee, H.S. Im, Appl. Surf. Sci. 151, 6–16 (1999)

    Article  ADS  Google Scholar 

  8. Y.M. Sung, H.J. Kim, Thin Solid Films 515(12), 4996–4999 (2007)

    Article  ADS  Google Scholar 

  9. M. Addamo, V. Augugliaro, A.D. Paola, E. Garcia Lopez, V. Loddo, G. Marci, L. Palmisano, Thin Solid Films 516(12), 3802–3807 (2008). https://doi.org/10.1016/j.tsf.2007.06.139

    Article  ADS  Google Scholar 

  10. H.O. Seo, T.G. Woo, E.J. Park, B.J. Cha, I.H. Kim, S.W. Han, Y.D. Kim, Appl. Surf. Sci 420, 808–816 (2017)

    Article  ADS  Google Scholar 

  11. R. Kumar, R. Kumar, N. Kushwaha, J. Mittal, IEEE Sens J 16(12), 4691–4695 (2016). https://doi.org/10.1109/JSEN.2016.2550079

    Article  ADS  Google Scholar 

  12. C.-H. Chang, T.-C. Chou, W.-C. Chen, J.-S. Niu, K.-W. Lin, S.-Y. Cheng, W.-C. Liu, Sens. Actuators, B Chem. 317, 128145 (2020). https://doi.org/10.1016/j.snb.2020.128145

    Article  Google Scholar 

  13. J. Bai, B. Zhou, Chem. Rev. 114(19), 10131–10176 (2014)

    Article  Google Scholar 

  14. A. Paliwal, A. Sharma, M. Tomar, V. Gupta, Sens. Actuators B Chem. 250, 679–685 (2017). https://doi.org/10.1016/j.snb.2017.05.064

    Article  Google Scholar 

  15. H. Chen, Y. Liu, C. Xie, J. Wu, D. Zeng, Y. Liao, Ceram. Int. 38(1), 503–509 (2012)

    Article  Google Scholar 

  16. A. Fujishima, K. Honda, Nature 238, 37–38 (1972)

    Article  ADS  Google Scholar 

  17. M. Zdorovets, A. Kozlovskiy, D. Tishkevich, T. Zubar, A. Trukhanov, J. Mater. Sci. Mater. Electron. 31, 21142–21153 (2020). https://doi.org/10.1007/s10854-020-04626-7

    Article  Google Scholar 

  18. W. Yang, H. Shen, J. Ge, B. Xu, Nanotechnology 32, 155503 (2021). https://doi.org/10.1016/j.apsusc.2021.149446

    Article  ADS  Google Scholar 

  19. S.S. El-Deen, A.M. Hashem, A.E. Abdel Ghany, Ionics 24, 2925–2934 (2018). https://doi.org/10.1007/s11581-017-2425-y

    Article  Google Scholar 

  20. F. Aydin Unal, S. Ok, M. Unal, S. Topal, K. Cellat, F. Şen, J. Mol. Liquids 299, 112177 (2020). https://doi.org/10.1016/j.molliq.2019.112177

    Article  Google Scholar 

  21. M. Fitraa, I. Dauta, M. Irwantoa, N. Gomesha, Y.M. Irwan, Energy Procedia J. Mol. Liquid 36, 278–286 (2013). https://doi.org/10.1016/j.egypro.2013.07.038

    Article  Google Scholar 

  22. I. Dundar, M. Krichevskaya, A. Katerski, I.O. Acik, R. Soc. Open Sci. 6, 181578 (2019). https://doi.org/10.1098/rsos.181578

    Article  ADS  Google Scholar 

  23. R. Dholam, N. Patel, M. Adami, A. Miotello, Int. J. Hydrogen Energy 33, 6896–6903 (2008). https://doi.org/10.1016/j.ijhydene.2008.08.061

    Article  Google Scholar 

  24. Y. Doubi, B. Hartiti, H. Labrim, S. Fadili, A. Batan, M. Tahri, A. Belfhaili, P. Thevenin, Mater. Today Proc. 30, 823–827 (2020). https://doi.org/10.1016/j.matpr.2020.04.186

    Article  Google Scholar 

  25. C. Balasingh, A. Abuhasan. Diffraction peak broadening studies in Al2O3 (Whisker) composites. Powder Diffr. (1991)

  26. Z. Matěj, L. Matějová, R. Kužel, Powder Diffr. 28, 161–183 (2013). https://doi.org/10.1017/S0885715613001061

    Article  ADS  Google Scholar 

  27. S. Benramache, A. Rahal, B. Benhaoua, Optik 125(2), 663–666 (2014). https://doi.org/10.1016/j.ijleo.2013.07.085

    Article  ADS  Google Scholar 

  28. A. Begum, A. Hussain, A. Rahman, Beilstein J. Nanotechnol. 2(3), 438–443 (2012)

    Article  Google Scholar 

  29. M.R. Alfaro Cruz, D. Sanchez-Martinez, L.M. Torres-Martinez, Int. J. Hydrogen Energy 44(36), 20017–20028 (2019)

    Article  Google Scholar 

  30. A. Kotbi, B. Hartiti, S. Fadili, A. Ridah, P. Thevenin, Opt. Quant. Electron 48, 524 (2016). https://doi.org/10.1007/s11082-016-0784-7

    Article  Google Scholar 

  31. Z. Essalhi, B. Hartiti, A. Lfakir, B. Mari, P. Thevenin, Opt. Quant. Electron 49, 301 (2017). https://doi.org/10.1007/s11082-017-1142-0

    Article  Google Scholar 

  32. T.I.A.N. Guang-Lei, H.E. Hong-Bo, S.H.A.O. Jian-Da, Chinese Phys. Lett. 22(7), 1787 (2005)

    Article  ADS  Google Scholar 

  33. F. Zahedi, R.S. Dariani, S.M. Rozati, Bull. Mater. Sci. 37(3), 433–439 (2014). https://doi.org/10.1007/s12034-014-0696-8

    Article  Google Scholar 

  34. B.E. Yoldas, P.W. Partlow, Thin Solid Films 129, 1–14 (1985). https://doi.org/10.1016/0040-6090(85)90089-6

    Article  ADS  Google Scholar 

  35. M.H. Liao, C.H. Hsu, D.H. Chen, J. Solid State Chem. 179, 2020–2026 (2006)

    Article  ADS  Google Scholar 

  36. R. Shakoury, A. Zarei, SILICON 11, 1247–1252 (2019). https://doi.org/10.1007/s12633-018-9897-x

    Article  Google Scholar 

  37. I.M. El Radaf, H.Y.S. Al-Zahrani, A.S. Hassanien, J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03369-9

    Article  Google Scholar 

  38. J. Sabataityte, I. Oja, F. Lenzmann, O. Volobujeva, M. Krunks, J. Solid State Chem. 9(5–6), 708–712 (2006)

    Google Scholar 

  39. I.A. Kariper, J. Mater. Res. Technol 5(1), 77–83 (2016)

    Article  Google Scholar 

  40. Z. Elkhalidi, B. Hartiti, S. Fadili, P. Thevenin, Int. J. Hydrogen Energy 43(27), 12574–12583 (1987). https://doi.org/10.1016/j.ijhydene.2018.04.162

    Article  Google Scholar 

  41. K. Sangwal, W. Kucharczyk, J. Phys. D 20, 522 (1987)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to PHC Toubkal/19/85 for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youssef Doubi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doubi, Y., Hartiti, B., Labrim, H. et al. Experimental study of properties of TiO2 thin films deposited by spray pyrolysis for future sensory applications. Appl. Phys. A 127, 475 (2021). https://doi.org/10.1007/s00339-021-04629-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04629-z

Keywords

Navigation