Skip to main content
Log in

Ternary nanocomposite of ZnFe2O4/α-Fe2O3/ZnO; synthesis via coprecipitation method and physical properties characterization

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnFe2O4/α-Fe2O3/ZnO, the ternary transition metal oxide nanocomposite powder was successfully synthesized by facile coprecipitation method directly from metalorganic precursors within 4 h of processing time considerably shorter than other reported methods. To study the post-synthesis thermal treatment effects on physical properties, calcination process was applied at 500, 600, and 700 °C individually for one hour. The structure, phase formation, morphology, and optical features of the samples were characterized by employing powder X-ray diffraction, scanning electron microscopy, and UV–visible spectroscopy. The results confirm the synthesis of pure and homogeneous composites comprised of nanoparticles with good crystallization in a narrow range of crystallite sizes between 25–39 nm. The particle sizes also were estimated between 48–93 nm. The optical property was studied by recording the absorbance spectrum from 200 to 700 nm. The absorption pattern illustrates the nanocomposite can be driven by UV and visible wavelengths with good efficiency that is more desirable for intended applications like photocatalytic activities compare with the individual components. By applying Tauc's method, the allowed direct bandgap and indirect bandgap of the prepared nanocomposite were estimated to be around 2.28 and 2.75 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.M. Tama, S. Das, S. Dutta, M.D.I. Bhuyan, M.N. Islam, M.A. Basith, RSC Adv. 9, 40357 (2019)

    Article  ADS  Google Scholar 

  2. V. Modafferi, S. Santangelo, M. Fiore, E. Fazio, C. Triolo, S. Patanè, R. Ruffo, M.G. Musolino, J. Nanomater. 9, 1 (2019)

    Article  Google Scholar 

  3. N. Mao, Sci. Rep. 9, 12383 (2019)

    Article  ADS  Google Scholar 

  4. E. Skliri, I. Vamvasakis, I.T. Papadas, S.A. Choulis, G.S. Armatas, Catalysts 11, 199 (2021)

    Article  Google Scholar 

  5. M.T. Ramesan, T. Anjitha, K. Parvathi, T. Anilkumar, G. Mathew, Adv Polym Technol 37, 3639 (2018)

    Article  Google Scholar 

  6. Q. Liu, E. Demirel, Y. Chen, T. Gong, X. Zhang, Y. Chen, J Appl Polym Sci 136, 47685 (2019)

    Article  Google Scholar 

  7. C.-W. Cui, C. Yang, J. Bao, X.-J. Huang, X.-F. Zeng, J.-F. Chen, A.C.S. Appl, Nano Mater. 3, 9026 (2020)

    Google Scholar 

  8. L. Shen, Z. Huang, Y. Liu, R. Li, Y. Xu, G. Jakaj, H. Lin, Front. Chem. 8, 224 (2020)

    Article  ADS  Google Scholar 

  9. A.G. Tamirat, J. Rick, A.A. Dubale, W.-N. Su, B.-J. Hwang, Nanoscale horizons 1, 243 (2016)

    Article  ADS  Google Scholar 

  10. S. Suman, A. Chahal, P. Kumar, Kumar. Curr. Comput.-Aided Drug Des. 10, 273 (2020)

    Google Scholar 

  11. C. Lo Vecchio, S. Trocino, S. Campagna Zignani, V. Baglio, A. Carbone, M.I. Díez García, M. Contreras, R. Gómez, A.S. Aricò, Catalysts 10, 525 (2020)

    Article  Google Scholar 

  12. S.-M. Tao, R.-J. Chung, L.-Y. Lin, Chem Asian J 15, 3853 (2020)

    Article  Google Scholar 

  13. M.A. Borysiewicz, Curr. Comput.-Aided Drug Des. 9, 505 (2019)

    Google Scholar 

  14. Chen C, Li Z, Lin H, Wang G, Liao J, Li M, Lv S, Li W, Dalton transactions (Cambridge, England: 2003) 45, 3750 (2016)

  15. S. Nadupalli, S. Repp, S. Weber, E. Erdem, Nanoscale (2021). https://doi.org/10.1039/D1NR00943E

  16. H. Guo, Y. Zhang, A.C. Marschilok, K.J. Takeuchi, E.S. Takeuchi, P. Liu, Phys. Chem. Chem. Phys. 19, 26322 (2017)

    Article  Google Scholar 

  17. X. Zhang, Z. Chen, J. Liu, S. Cui, Chem. Phys. Lett. 764, 138265 (2021)

    Article  Google Scholar 

  18. A.H. Navidpour, M. Fakhrzad, Int. J. Environ. Anal. Chem., 1 (2020). https://doi.org/10.1080/03067319.2020.1726331

  19. L.I. Granone, A.C. Ulpe, L. Robben, S. Klimke, M. Jahns, F. Renz, T.M. Gesing, T. Bredow, R. Dillert, D.W. Bahnemann, Phys. Chem. Chem. Phys. 20, 28267 (2018)

    Article  Google Scholar 

  20. H. Song, L. Zhu, Y. Li, Z. Lou, M. Xiao, Z. Ye, J. Mater. Chem. A 3, 8353 (2015)

    Article  Google Scholar 

  21. X. Li, B. Jin, J. Huang, Q. Zhang, R. Peng, S. Chu, Solid State Sci. 80, 6 (2018)

    Article  ADS  Google Scholar 

  22. J.P. Dhal, B.G. Mishra, G. Hota, RSC Adv. 5, 58072 (2015)

    Article  ADS  Google Scholar 

  23. X.X. Yu, F.Z. Dong, B. Dong, L. Liu, Y. Wu, AML 8, 393 (2017)

    Article  Google Scholar 

  24. J. Xie, Z. Zhou, Y. Lian, Y. Hao, P. Li, Y. Wei, Ceram. Int. 41, 2622 (2015)

    Article  Google Scholar 

  25. N. Manzoor, M. Sadiq, M. Naqvi, U. Sikandar, S.R. Naqvi, Catalysts 10, 163 (2020)

    Article  Google Scholar 

  26. D.H. Taffa, R. Dillert, A.C. Ulpe, K.C.L. Bauerfeind, T. Bredow, D.W. Bahnemann, M. Wark, J. Photon, Energy 7, 12009 (2016)

    Google Scholar 

  27. R. Dom, A.S. Chary, R. Subasri, N.Y. Hebalkar, P.H. Borse, Int. J. Energy Res. 39, 1378 (2015)

    Article  Google Scholar 

  28. S. Hussain, S. Hussain, A. Waleed, M.M. Tavakoli, S. Yang, M.K. Rauf, Z. Fan, M.A. Nadeem, J. Phys. Chem. C 121, 18360 (2017)

    Article  Google Scholar 

  29. R. Dinali, A. Ebrahiminezhad, M. Manley-Harris, Y. Ghasemi, A. Berenjian, Crit. Rev. Microbiol. 43, 493 (2017)

    Article  Google Scholar 

  30. L.S. Arias, J.P. Pessan, A.P.M. Vieira, T.M.T. de Lima, A.C.B. Delbem, D.R. Monteiro, Antibiotics (Basel, Switzerland) 7: 46 (2018)

  31. N.V.S. Vallabani, S. Singh, 3 Biotech 8, 279 (2018)

    Article  Google Scholar 

  32. S.M. Hoque, M.S. Hossain, S. Choudhury, S. Akhter, F. Hyder, Mater. Lett. 162, 60 (2016)

    Article  Google Scholar 

  33. G. Madhumitha, G. Elango, S.M. Roopan, Appl. Microbiol. Biotechnol. 100, 571 (2016)

    Article  Google Scholar 

  34. J. Jiang, J. Pi, J. Cai, Bioinorg. Chem. Appl. 2018, 1062562 (2018)

    Article  Google Scholar 

  35. S. Thiagarajan, A. Sanmugam, D. Vikraman, in Recent Applications in Sol-Gel Synthesis, ed. by U. Chandra (InTech, 2017)

  36. K. Uma, S. Balu, G.-T. Pan, T. Yang, Inorganics 6, 90 (2018)

    Article  Google Scholar 

  37. M.L. Maya-Treviño, M. Villanueva-Rodríguez, J.L. Guzmán-Mar, L. Hinojosa-Reyes, A. Hernández-Ramírez, Photochem. Photobiol. Sci.: Off. J. Eur. Photochem. Assoc. Eur. Soc. Photobiol. 14, 543 (2015)

    Article  Google Scholar 

  38. T.-W. Chen, J. Princy Merlin, S.-M. Chen, S. Anandaraj, M.S. Elshikh, T.-W. Tseng, K. Wang, D. Qi, J. Jiang, Ultrason. Sonochem. 64, 104717 (2020)

    Article  Google Scholar 

  39. W. Zhang, Y. Yang, E. Ziemann, A. Be’er, M.Y. Bashouti, M. Elimelech, R. Bernstein, Environ. Sci. NANO 6, 3080 (2019)

    Google Scholar 

  40. J. Feng, Y. Wang, L. Zou, B. Li, X. He, Y. Ren, Y. Lv, Z. Fan, J. Colloid Interface Sci. 438, 318 (2015)

    Article  ADS  Google Scholar 

  41. K. Kombaiah, J.J. Vijaya, L.J. Kennedy, M. Bououdina, Optik 129, 57 (2017)

    Article  ADS  Google Scholar 

  42. A. Manikandan, V.J. Judith, M. Sundararajan, C. Meganathan, L.J. Kennedy, M. Bououdina, Superlattices Microstruct. 64, 118 (2013)

    Article  ADS  Google Scholar 

  43. K.G. Sebehanie, IJHIT 10, 199 (2017)

    Article  Google Scholar 

  44. J. Yao, J. Yan, Y. Huang, Y. Li, S. Xiao, J. Xiao, Front. Chem. 6, 442 (2018)

    Article  ADS  Google Scholar 

  45. T. Guo, M.-S. Yao, Y.-H. Lin, C.-W. Nan, Cryst. Eng. Comm 17, 3551 (2015)

    Article  Google Scholar 

  46. J. Li, Z. Liu, Z. Zhu, RSC Adv 4, 51302 (2014)

    Article  ADS  Google Scholar 

  47. Y. Xu, S. Wu, X. Li, Y. Huang, Z. Wang, Y. Han, J. Wu, H. Meng, X. Zhang, New J. Chem. 41, 15433 (2017)

    Article  Google Scholar 

  48. Q. Dong, X. Liu, W. Zhang, Opt. Mater. Express 9, 3519 (2019)

    Article  ADS  Google Scholar 

  49. S. Choudhary, A. Bisht, S. Mohapatra, Ceram. Int. 47, 3833 (2021)

    Article  Google Scholar 

  50. F. Iqbal, M.I.A. Mutalib, M.S. Shaharun, khan M, Abdullah B. Procedia Eng. 148, 787 (2016)

    Article  Google Scholar 

  51. D.E. Fouad, C. Zhang, H. El-Didamony, L. Yingnan, T.D. Mekuria, A.H. Shah, Results Phys. 12, 1253 (2019)

    Article  ADS  Google Scholar 

  52. R.S. Yadav, I. Kuřitka, J. Vilcakova, P. Urbánek, M. Machovsky, M. Masař, M. Holek, J. Phys. Chem. Solids 110, 87 (2017)

    Article  ADS  Google Scholar 

  53. I. Shahine, N. Beydoun, J.J. Gaumet, E.-E. Bendeif, H. Rinnert, P. Magri, A.E. Naciri, P. Miska, S. Jradi, S. Akil, Catalysts 9, 162 (2019)

    Article  Google Scholar 

  54. P. Bindu, S. Thomas, Acta Phys. Pol. A 131, 1474 (2017)

    Article  ADS  Google Scholar 

  55. K. Zangeneh Kamali, P. Alagarsamy, N.M. Huang, B.H. Ong, H.N. Lim, Sci. World J. 2014, 1 (2014)

    Article  Google Scholar 

  56. N.M. Shamhari, B.S. Wee, S.F. Chin, K.Y. Kok, ACSi 65, 578 (2018)

    Article  Google Scholar 

  57. J. Tauc, R. Grigorovici, A. Vancu, Phys. Stat. Sol. (b) 15, 627 (1966)

    Article  ADS  Google Scholar 

  58. B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie, Phys. Stat. Sol. (b) 252, 1700 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Negar Khorami and Faeazeh Mohammadi for their helpful assistant in Autodesk 3ds max drawing of the schematic of synthesis procedures. Also many thanks to Sepideh Madani for her precious comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Khalaj.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shams, S., Sheibanizadeh, Z. & Khalaj, Z. Ternary nanocomposite of ZnFe2O4/α-Fe2O3/ZnO; synthesis via coprecipitation method and physical properties characterization. Appl. Phys. A 127, 459 (2021). https://doi.org/10.1007/s00339-021-04607-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04607-5

Keywords

Navigation