Skip to main content

Advertisement

Log in

Structural and optical properties of nanosized ZnO/ZnTiO3 composite materials synthesized by a facile hydrothermal technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report the structural and optical properties of ZnO/ZnTiO3 nanocomposites synthesized at various calcination temperatures ranging from 500 to 900 °C by a simple hydrothermal process without using any dispersant agents. The XRD results reveal the coexistence of ZnO and ZnTiO3 phases when calcined at 600–900 °C, however, only pure ZnO phase appears when calcined at 500 °C for 1 h. Functional groups were identified by FTIR spectroscopic technique, which exhibit characteristic infrared absorption bands of ZnO/ZnTiO3 nanocomposites. The synthesized composites have absorbance at a wavelength of 300 and 370 nm and the band gap energy of the ZnO/ZnTiO3 nanocomposite system is tuned by varying the calcination temperature. The morphology of the particles were visualized by TEM analysis which shows the morphology changing from irregular particles to uniform spherical, rod and cubic structures while increasing the temperature from 500 to 900 °C. All the samples show interesting broad blue and green emission at about 490 and 530 nm. Incidentally, the emission intensity of the composite ZnO/ZnTiO3 phase is stronger than that of pure ZnO phase prepared at 700 and 900 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L.Q. Wang, H.M. Kang, D.F. Xue, C.H. Liu, J. Cryst. Growth 311, 611 (2009)

    Article  Google Scholar 

  2. D. Qian, L. Gerward, J.Z. Jiang, J. Mater. Sci. 39, 5389 (2004)

    Article  Google Scholar 

  3. A. Chaouchi, S. Astorg, S. Marinel, M. Aliouat, Mater. Chem. Phys. 103, 106 (2007)

    Article  Google Scholar 

  4. Q. Xu, M. Jarn, M. Linden, J.-H. Smatt, Thin Solid Films 531, 222 (2013)

    Article  Google Scholar 

  5. Y. Yang, X.W. Sun, B.K. Tay, J.X. Wang, Z.L. Dong, H.M. Fan, Adv. Mater. 19, 1839 (2007)

    Article  Google Scholar 

  6. H.T. Kim, S.H. Kim, S. Nahm, J.D. Byun, Y. Kim, J. Am. Ceram. Soc. 82, 3043 (1999)

    Article  Google Scholar 

  7. H.T. Kim, S. Nahm, J.D. Byun, Y. Kim, J. Am. Ceram. Soc. 82, 3476 (1999)

    Article  Google Scholar 

  8. Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21, 4087 (2009)

    Article  Google Scholar 

  9. J.A. Anta, E. Guillen, R. Tena-Zaera, J. Phys. Chem. C 116, 11413 (2012)

    Article  Google Scholar 

  10. K. Sarkar, E.V. Braden, T. Froschl, N. Husing, P. Muller-Buschbaum, J. Mater. Chem. A 2, 15008 (2014)

    Article  Google Scholar 

  11. C.F. Song, T. Qiu, H.F. Yuan, X.Y. Li, Mater. Sci. Eng. B 175, 243 (2010)

    Article  Google Scholar 

  12. H.-S. Lim, J.S. Lee, S. Lee, Y.S. Kang, Y.-K. Sun, K.-D. Suh, Acta Mater. 122, 287 (2017)

    Article  Google Scholar 

  13. L. Wan, X. Li, Z. Qu, Y. Shi, H. Li, Q. Zhao, G. Chen, J. Hazard Mater. 184, 864 (2010)

    Article  Google Scholar 

  14. N.T. Nolan, M.K. Seery, S.C. Pillai, Chem. Mater. 23, 1496 (2011)

    Article  Google Scholar 

  15. S.K. Manik, P. Bose, S.K. Pradhan, Mater. Chem. Phys. 82, 837 (2003)

    Article  Google Scholar 

  16. Y.S. Chang, Y.H. Chang, I.G. Chen, G.J. Chen, Y.L. Chai, J. Cryst. Growth 243, 319 (2002)

    Article  Google Scholar 

  17. Y.S. Chang, Y.H. Chang, I.G. Chen, G.J. Chen, Y.L. Chai, Solid State Commun. 128, 203 (2003)

    Article  Google Scholar 

  18. E. Hosono, S. Fujihara, M. Onuki, T. Kimura, J. Am. Ceram. Soc. 87, 1785 (2004)

    Article  Google Scholar 

  19. Y.-W. Wang, P.-H. Yuan, C.-M. Fan, Y. Wang, G.-Y. Ding, Y.-F. Wang, Ceram. Int. 38, 4173 (2012)

    Article  Google Scholar 

  20. C.-L. Wang, W.-S. Hwang, H.-H. Ko, C.-S. Hsi, K.-M. Chang, M.-C. Wang, Metal. Mater. Trans. A 45A, 250 (2014)

    Article  Google Scholar 

  21. C.-L. Wang, W.-S. Hwang, H.-L. Chu, C.-S. Hsi, H.-H. Ko, K.-M. Chang, X. Zhaof, M.-C. Wang, W.-L. Li, Ceram. Int. 40, 7407 (2014)

    Article  Google Scholar 

  22. B.C. Yadav, A. Yadav, S. Singh, K. Singh, Sens. Actuators B 177, 605 (2013)

    Article  Google Scholar 

  23. M. Mukhtar, L. Munisa, R. Saleh, Mater. Sci. Appl. 3, 543 (2012)

    Google Scholar 

  24. R. Fu, Q. Wang, S. Gao, Z. Wang, B. Huang, Y. Dai, J. Lu, J. Power Sources 285, 449 (2015)

    Article  Google Scholar 

  25. G.-Y. Wang, Q. Ya, J. Cheng, Y.-J. Wang, J. Fuel Chem. Techol. 38, 502 (2010)

    Article  Google Scholar 

  26. S.S. Kumar, P. Venkateswarlu, V.R. Rao, G.N. Rao, Int. Nano Lett. 3, 30 (2013)

    Article  Google Scholar 

  27. H.-H. Ko, C.-S. Hsi, M.-C. Wang, X. Zhao, J. Alloys and Compd. 588, 428 (2014)

    Article  Google Scholar 

  28. M.M. Jaculine, C.J. Raj, S.J. Das, J. Alloys and Compd. 577, 131 (2013)

    Article  Google Scholar 

  29. C. Karunakaran, P. Vinayagamoorthy, J. Jayabharathi, Mat. Res. Express 1, 045019 (2014)

    Article  Google Scholar 

  30. DP. Dutta, A. Singh, A.K. Tyagi, J. Environ. Chem. Eng. 2, 2177 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jose, M., Elakiya, M. & Dhas, S.A.M.B. Structural and optical properties of nanosized ZnO/ZnTiO3 composite materials synthesized by a facile hydrothermal technique. J Mater Sci: Mater Electron 28, 13649–13658 (2017). https://doi.org/10.1007/s10854-017-7207-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7207-9

Navigation