Skip to main content
Log in

Influence of iron substitution on structural and dielectric properties of nano ZnMn2O4

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Iron-doped nano ZnMn2O4 (ZnMn2-xFexO4, x = 0, 0.05, 0.15, 0.2) samples were formed using the sol–gel method. Rietveld refinement method revealed small changes in the cell parameters and crystallite size upon doping ZnMn2O4 with Fe. ZnMn2O4 is partially inverse spinel and it exhibited a normal spinel structure as it doped with Fe. The nano nature of the samples was confirmed using the high-resolution transmission electron microscope technique. The changes in the dielectric, complex impedance and complex modulus properties with doping, frequency and temperature were investigated using the complex impedance technique. Maxwell-Wagner model and Koop’s theory were used to explore the dielectric characteristics of the sample. The dielectric constant of 15% Fe-doped ZMO sample is larger than the dielectric of 10% Fe-doped one. The samples exhibited a ferroelectric nature at 60 °C. The a.c. conductivity of 15% Fe-doped sample is slightly higher than that of 10% Fe-doped sample. All doped samples exhibited the overlap large polarons (OLP) model. The doped samples have a single relaxation process. The activation energy of conduction was increased as the amount of Fe doping increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. R. Gherbi, M. Benamira, Y. Bessekhouad, J. Alloys Comp. 851, 156797 (2021)

    Article  Google Scholar 

  2. S-C. Ma, M. Sun, S-X. Wang, D-S. Li, W-L. Liu, M-M. Ren, F-G. Kong, S-. Wang, Y-Mei Xia, (2021), Scripta Materialia, 194, 113707

  3. R. Muruganantham, I.V.B. Maggay, J.-Y. Huang, Y.-G. Lin, C.-C. Yang, W.-R. Liu, J. Alloys Comp. 84, 415601 (2020)

    Google Scholar 

  4. Z.K. Heiba, M.A. Deyab, A.M. El-naggar, M.B. Mohamed, Ceram. Int. 47(6), 7475 (2021)

    Article  Google Scholar 

  5. Z R Khan, Shkir, V. Ganesh, I. S. Yahia, S. AlFaify, (2021) Indian J Phys, https://doi.org/10.1007/s12648-020-01695-6

  6. B. Ameri, S.S.H. Davarani, H.R. Moazami, H. Darjazi, J. Alloys Compd. 720, 408 (2017)

    Article  Google Scholar 

  7. Zein K. Heiba, Abdallah A. Shaltout, Sameh I. Ahmed, Eman Alzahrani, Hamdy H. Wahba, M.A. Deyab, Mohamed Bakr Mohamed, Appl. Phys. A 127, 12 (2021)

    Article  ADS  Google Scholar 

  8. R. Gherbi, Y. Bessekhouad, M. Trari, J. Phys. Chem. Solids 89, 69 (2016)

    Article  ADS  Google Scholar 

  9. M.B. Mohamed, Appl. Phys. A 125(11), 1 (2019)

    Article  Google Scholar 

  10. Z.K. Heiba, M.B. Mohamed, Appl. Phys. A 124(12), 1 (2018)

    Article  Google Scholar 

  11. R. Gherbi, Y. Bessekhouad, M. Trari, J. Alloys Comp. 655, 188 (2016)

    Article  Google Scholar 

  12. Z.K. Heiba, N.M. Farag, A.M. El-naggar, J.R. Plaisier, A.M. Aldhafiri, M.B. Mohamed, Ceram. Int. 47(6), 7888 (2021)

    Article  Google Scholar 

  13. Z.K. Heiba, N.M. Farag, A.M. El-naggar, M. Abdellatief, A.M. Aldhafiri, M.B. Mohamed, J. Mater. Res. Technol. 10, 832 (2021)

    Article  Google Scholar 

  14. A.M. Wahba, Z.K. Heiba, M.B. Mohamed, Mater. Sci. Eng. B 269, 115151 (2021)

    Article  Google Scholar 

  15. X. Zhu, Z. Wei, L. Ma, J. Liang, X. Zhang, Bulletin Mater. Sci. 43, 4 (2020)

    Article  Google Scholar 

  16. Y.L. Wang, X.Q. Wei, N. Guo, X.L. Deng, X.J. Xu, J. Mater. Sci. Mater. Electron. 28, 1223 (2017)

    Article  Google Scholar 

  17. Z.K. Heiba, M.M. Ghannam, M.M.S. Sanad, A.A. Albassam, M.B. Mohamed, J. Mater. Sci. Mater. Electron. 31(11), 8946 (2020)

    Article  Google Scholar 

  18. K. Rupali Singh, Biswas. J. Mater. Sci. Mater. Electron. 31, 12434 (2020)

    Article  Google Scholar 

  19. D El-Said Bakeer, (2020) Journal of Superconductivity and Novel Magnetism, 33: 1789

  20. L.-Q. Yan, Y. Sun, L.-H. He, F.-W. Wang, J. Shen, Chinese Phys. B 20, 097503 (2011)

    Article  ADS  Google Scholar 

  21. I.N. Apostolova, A.T. Apostolov, J.M. Wesselinowa, J. Alloys Comp. 852, 156885 (2021)

    Article  Google Scholar 

  22. S. Qiao, N. Huang, J. Zhang, Y. Zhang, Y. Sun, Z. Gao, J. Solid State Electrochem. 23, 63 (2019)

    Article  Google Scholar 

  23. J. Rodríguez-Carvajal, (1993). Phys. B (Amsterdam, Neth.) 192:55

  24. L. Lutterotti, Nucl. Inst. Methods Phys. Res. B. 268, 334 (2010)

    Article  ADS  Google Scholar 

  25. X. Juan, H. Hua, L. Hanxing, Y. Zhonghua, S. Zhe, Z. Lin, X. Qi, D. Jinqiang, C. Minghe, Ceram. Int. 42, 12796 (2016)

    Article  Google Scholar 

  26. P.C. Sati, M. Kumar, S. Chhoker, Ceram. Int. 41, 3227 (2015)

    Article  Google Scholar 

  27. K.W. Wagner, Ann. Phys. 40, 817 (1973)

    Google Scholar 

  28. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  ADS  Google Scholar 

  29. D. El-Said Bakeer, (2020), J Superconduct Novel Magnet. 33:1789

  30. Z.K. Heiba, M.A. Deyab, A.M. El-naggar, M.B. Mohamed, Ceram. Int. 47, 7475 (2021)

    Article  Google Scholar 

  31. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    Article  ADS  Google Scholar 

  32. V.D. Nithya, R. Kalai Selvan, (2011) Phys B Condens Matter, 406:24

  33. R. Singh, K. Biswas, J. Mater. Sci. Mater. Electron. 31, 12434 (2020)

    Article  Google Scholar 

  34. S. Dutta, R.N.P. Choudhary, P.K. Sinha, A.K. Thakur, J. Appl. Phys. 96, 1607 (2004)

    Article  ADS  Google Scholar 

  35. X. Wang, Q. Hu, G. Zang, C. Zhang, L. Li, Mater. Chem. Phys. 195, 157 (2017)

    Article  Google Scholar 

  36. Z.-L. Hou, M.-S. Cao, J. Yuan, X.-Y. Fang, X.-L. Shi, J. Appl. Phys. 105, 076103–1 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge Taif University Research Supporting Project number (TURSP-2020/66), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohamed Bakr Mohamed or Sameh. I. Ahmed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heiba, Z.K., Mohamed, M.B., Ghannam, M.M. et al. Influence of iron substitution on structural and dielectric properties of nano ZnMn2O4. Appl. Phys. A 127, 436 (2021). https://doi.org/10.1007/s00339-021-04590-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04590-x

Keywords

Navigation