Skip to main content

Advertisement

Log in

Synthesis optimization and investigation on electrical properties of Fe+2-doped Mg2TiO4 ceramics for energy storage

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polycrystalline MgFeTiO4 ceramic is prepared using a solid-state reaction route. The structural, vibrational, morphology, and electrical characteristics of the compound are studied. Crystal structure and phase analysis results suggest that MgFeTiO4 has a cubic spinel structure corresponding to the Fd3m space group. Fourier transform infrared (FTIR) and Raman spectroscopy indicate that Mg‒O, Fe‒O, and Ti‒O bonds are present in the sample. X-ray photoelectron spectroscopy study suggests the valence state of iron (Fe); thus, the formation of MgFeTiO4 is confirmed. The morphology and compositional analyses are done by field emission scanning electron microscopy and high-resolution transmission electron microscopy. The electrical and dielectric behaviors of the sample are studied at various temperature ranges. The dc conductivity of 5.68 × 10−4 S cm−1 is obtained at 300 °C, which is higher compared to LiFeTiO4. The activation energy is estimated and observed two different temperature-dependent conductivity regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Qu, D. Luo, S. Fang, Y. Liu, L. Yang, S. Hirano, C.-C. Yang, J. Power Sour. 307, 69 (2016)

    CAS  Google Scholar 

  2. N.S. Lewis, D.G. Nocera, Proc. Natl. Acad. Sci. 103, 15729 (2006)

    CAS  Google Scholar 

  3. G.M. Joselin Herbert, S. Iniyan, E. Sreevalsan, S. Rajapandian, Renew. Sustain. Energy Rev. 11, 1117 (2007)

    Google Scholar 

  4. A. Mustafa Omer, Renew. Sustain. Energy Rev. 12, 344 (2008)

    Google Scholar 

  5. P.G. Bruce, B. Scrosati, J.-M. Tarascon, Angew. Chem. Int. Ed. 47, 2930 (2008)

    CAS  Google Scholar 

  6. B. Dunn, H. Kamath, J.-M. Tarascon, Science 334, 928 (2011)

    CAS  Google Scholar 

  7. C. Liu, Z.G. Neale, G. Cao, Mater. Today 19, 109 (2016)

    CAS  Google Scholar 

  8. X. Sun, V. Duffort, B.L. Mehdi, N.D. Browning, L.F. Nazar, Chem. Mater. 28, 534 (2016)

    CAS  Google Scholar 

  9. R. Mohtadi, F. Mizuno, Beilstein J. Nanotechnol. 5, 1291 (2014)

    Google Scholar 

  10. P. Saha, M.K. Datta, O.I. Velikokhatnyi, A. Manivannan, D. Alman, P.N. Kumta, Prog. Mater. Sci. 66, 1 (2014)

    CAS  Google Scholar 

  11. W. Li, S. Cheng, J. Wang, Y. Qiu, Z. Zheng, H. Lin, S. Nanda, Q. Ma, Y. Xu, F. Ye, M. Liu, L. Zhou, Y. Zhang, Angew. Chem. Int. Ed. 55, 6406 (2016)

    CAS  Google Scholar 

  12. H.D. Yoo, I. Shterenberg, Y. Gofer, G. Gershinsky, N. Pour, D. Aurbach, Energy Environ. Sci. 6, 2265 (2013)

    CAS  Google Scholar 

  13. J. Muldoon, C.B. Bucur, A.G. Oliver, T. Sugimoto, M. Matsui, H.S. Kim, G.D. Allred, J. Zajicek, Y. Kotani, Energy Environ. Sci. 5, 5941 (2012)

    CAS  Google Scholar 

  14. S. Rasul, S. Suzuki, S. Yamaguchi, M. Miyayama, Electrochim. Acta 82, 243 (2012)

    CAS  Google Scholar 

  15. Y. Li, Y. Nuli, J. Yang, T. Yilinuer, J. Wang, Chin. Sci. Bull. 56, 386 (2011)

    CAS  Google Scholar 

  16. A.B. Ikhe, N. Naveen, K.S. Sohn, M. Pyo, Electrochim. Acta 283, 393 (2018)

    CAS  Google Scholar 

  17. E. Levi, G. Gershinsky, D. Aurbach, O. Isnard, G. Ceder, Chem. Mater. 21, 1390 (2009)

    CAS  Google Scholar 

  18. D. Aurbach, Z. Lu, A. Schechter, Y. Gofer, H. Gizbar, R. Turgeman, Y. Cohen, M. Moshkovich, E. Levi, Nature 407, 724 (2000)

    CAS  Google Scholar 

  19. E. Levi, Y. Gofer, D. Aurbach, Chem. Mater. 22, 860 (2010)

    CAS  Google Scholar 

  20. D. Aurbach, G.S. Suresh, E. Levi, A. Mitelman, O. Mizrahi, O. Chusid, M. Brunelli, Adv. Mater. 19, 4260 (2007)

    CAS  Google Scholar 

  21. A. Mitelman, M.D. Levi, E. Lancry, E. Levi, D. Aurbach, Chem. Commun. 41, 4212 (2007)

    Google Scholar 

  22. J.P. Pereira-Ramos, R. Messina, J. Perichon, J. Electroanal. Chem. Interfacial Electrochem. 218, 241 (1987)

    CAS  Google Scholar 

  23. P. Novak, R. Imhof, O. Haas, Electrochim. Acta 45, 351 (1999)

    CAS  Google Scholar 

  24. Z. Feng, J. Yang, Y. NuLi, J. Wang, J. Power Sour. 184, 604 (2008)

    CAS  Google Scholar 

  25. Y. NuLi, Y. Zheng, Y. Wang, J. Yang, J. Wang, J. Mater. Chem. 21, 12437 (2011)

    CAS  Google Scholar 

  26. M.A. Arillo, M.L. López, E. Perez-Cappe, C. Pico, M.L. Veiga, Solid State Ionics 107, 307 (1998)

    CAS  Google Scholar 

  27. M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, Chem. Rev. 113, 5364 (2013)

    CAS  Google Scholar 

  28. U. Sen, S. Sarkar, P. Veluri, S. Singh, S. Mitra, Nanosci. Nanotechnol Asia 3, 21 (2013)

    CAS  Google Scholar 

  29. S. Kumar, R. Kumar, B. Koo, H. Choi, J. Ceram. Soc. Jpn 117, 689 (2009)

    CAS  Google Scholar 

  30. S. Chakrabarti, A.K. Thakur, K. Biswas, Solid State Ionics 262, 49 (2014)

    CAS  Google Scholar 

  31. V.D. Nithya, R. Kalai Selvan, Phys. B Condens. Matter 406, 24 (2011)

    CAS  Google Scholar 

  32. B. Mandal, A.K. Thakur, Ionics (Kiel) 24, 1065 (2018)

    CAS  Google Scholar 

  33. R.K. Bhuyan, T.S. Kumar, D. Goswami, A.R. James, A. Perumal, D. Pamu, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 178, 471 (2013)

    CAS  Google Scholar 

  34. S.H. Yang, Y.C. Hung, P.C. Tseng, H.Y. Lee, J. Alloys Compd. 801, 394 (2019)

    CAS  Google Scholar 

  35. L. Vijayan, R. Cheruku, G. Govindaraj, Mater. Res. Bull. 50, 341 (2014)

    CAS  Google Scholar 

  36. S. Chakrabarti, A.K. Thakur, K. Biswas, J. Power Sour. 313, 81 (2016)

    CAS  Google Scholar 

  37. C.H. Ashok, V.K. Rao, C.H. Chakra, J. Nanomed. Nanotechnol. 06, 2 (2015)

    Google Scholar 

  38. L.-X. Li, D. Xu, X.-Q. Li, W.-C. Liu, Y. Jia, New J. Chem. 38, 5445 (2014)

    CAS  Google Scholar 

  39. P. Tarte, R. Cahay, A. Garcia, Phys. Chem. Miner. 4, 55 (1979)

    CAS  Google Scholar 

  40. S. Chakrabarti, A.K. Thakur, K. Biswas, Ionics (Kiel) 22, 2045 (2016)

    CAS  Google Scholar 

  41. A.V. Knyazev, M. Mączka, I.V. Ladenkov, E.N. Bulanov, M. Ptak, J. Solid State Chem. 196, 110 (2012)

    CAS  Google Scholar 

  42. Z. Wang, S.K. Saxena, C.S. Zha, Phys. Rev. B 66, 024103 (2002)

    Google Scholar 

  43. J. Jayabharathi, A. Prabhakaran, C. Karunakaran, V. Thanikachalam, M. Sundharesan, RSC Adv. 6, 18718 (2016)

    CAS  Google Scholar 

  44. J.L. Gautier, E. Rios, M. Gracia, J.F. Marco, J.R. Gancedo, Thin Solid Films 311, 51 (1997)

    CAS  Google Scholar 

  45. N. Huo, Y. Yin, W. Liu, J. Zhang, Y. Ding, Q. Wang, Z. Shi, S. Yang, New J. Chem. 40, 7068 (2016)

    CAS  Google Scholar 

  46. Y. Sharma, N. Sharma, G.V.S. Rao, B.V.R. Chowdari, Electrochim. Acta 53, 2380 (2008)

    CAS  Google Scholar 

  47. Y. Sharma, N. Sharma, G.V. Subba Rao, B.V.R. Chowdari, Solid State Ionics 179, 587 (2008)

    CAS  Google Scholar 

  48. S. Dutta, R.N.P. Choudhary, P.K. Sinha, A.K. Thakur, J. Appl. Phys. 96, 1607 (2004)

    CAS  Google Scholar 

  49. R. Cheruku, G. Govindaraj, L. Vijayan, Mater. Chem. Phys. 141, 620 (2013)

    CAS  Google Scholar 

  50. R. Cheruku, L. Vijayan, G. Govindaraj, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 177, 771 (2012)

    CAS  Google Scholar 

  51. L. Vijayan, R. Cheruku, G. Govindaraj, S. Rajagopan, Mater. Chem. Phys. 130, 862 (2011)

    CAS  Google Scholar 

  52. J.R. Ferna, P. La, J. Gutie, Mater. Res. Bull. 47, 1861 (2012)

    Google Scholar 

  53. A. Shukla, R.N.P. Choudhary, A.K. Thakur, D.K. Pradhan, Phys. B Condens. Matter 405, 99 (2010)

    CAS  Google Scholar 

  54. M. Azizar Rahman, A.K.M. Akther Hossain, Phys. Scr. 89, 025803 (2014)

    Google Scholar 

  55. R. Martínez, A. Kumar, R. Palai, J.F. Scott, R.S. Katiyar, J. Phys. D Appl. Phys. 44, 105302 (2011)

    Google Scholar 

  56. D. Sekulic, Z. Lazarevic, C. Jovalekic, A. Milutinovic, N. Romcevic, Sci. Sinter. 48, 17 (2016)

    CAS  Google Scholar 

  57. M. Ram, Solid State Sci. 12, 350 (2010)

    CAS  Google Scholar 

  58. O. Padmaraj, M. Venkateswarlu, N. Satyanarayana, Ceram. Int. 41, 3178 (2015)

    CAS  Google Scholar 

  59. A. Ashok, T. Somaiah, D. Ravinder, C. Venkateshwarlu, C.S. Reddy, K.N. Rao, M. Prasad, World J. Condens. Matter Phys. 02, 257 (2012)

    CAS  Google Scholar 

  60. N. Singh, A. Agarwal, S. Sanghi, S. Khasa, J. Magn. Magn. Mater. 324, 2506 (2012)

    CAS  Google Scholar 

  61. A. Ray, P. Maji, A. Roy, S. Saha, P. Sadhukhan, S. Das, Mater. Res. Express 6, 12504 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupali Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Biswas, K. Synthesis optimization and investigation on electrical properties of Fe+2-doped Mg2TiO4 ceramics for energy storage. J Mater Sci: Mater Electron 31, 12434–12443 (2020). https://doi.org/10.1007/s10854-020-03790-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03790-0

Navigation