Skip to main content
Log in

Introducing magnetic properties in Fe-doped ZnO nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Proper correlation among the microstructural, optical and magnetic responses of Fe-doped ZnO nanoparticles has been established in this work. All the Fe-doped ZnO nanoparticles (Zn1−xFexO: x = 0.00, 0.05, 0.10 and 0.15) were prepared using chemical co-precipitation route. Average crystallites size of 18 nm to 28 nm was estimated using Scherrer’s formula. Compressive microstrain was detected in pristine ZnO samples, which moved toward tensile regime upon introducing Fe ions of different weight percentages. Mean crystallites size obtained from Scherrer’s formula was found in almost exact match with the particle size estimated from HRTEM images. Nearly spherical ZnO nanoparticles were seen in HRTEM images and negligible agglomeration among particles was also observed. Direct optical band gaps were found in the range of 2.89–3.24 eV as estimated from Tauc plots. A decent ferromagnetic signature in non-magnetic ZnO nanoparticles was also introduced at room temperature with the doping of Fe ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D.C. Look, G.C. Farlow, P. Reunchan, S. Limpijumnong, S.B. Zhang, K. Nordlund, Phys. Rev. Lett. 95, 225502 (2005)

    Article  ADS  Google Scholar 

  2. X. Wu, Z. Wei, L. Zhang, X. Wang, H. Yang, J. Jiang, J. Nanomaterials 2014, 792102 (2014)

    Google Scholar 

  3. C. Klingshirn, Phys. Stat. Sol. b 244, 3027–3073 (2007)

    Article  ADS  Google Scholar 

  4. M.S. Inpasalini, P.V. Rajesh, D. Das, S. Mukherjee, J. Mater Sci. Mater. Electron. 26, 1053–1059 (2015)

    Article  Google Scholar 

  5. T.A. Abdel-Baset, Y.W. Fang, B. Anis, C.G. Duan, M. Abdel-Hafiez, Nanoscale Res. Lett. 11(115), 1–12 (2016)

    Google Scholar 

  6. S.J. Pearton, C.R. Abernathy, M.E. Overberg, G.T. Thaler, D.P. Norton, N. Theodoropoulou, A.F. Hebard, Y.D. Park, F. Ren, J. Kim, J. Appl. Phys. 93, 1 (2003)

    Article  ADS  Google Scholar 

  7. P. Sharma, K. Sreenivas, K.V. Rao, J. Appl. Phys. 93, 3963 (2003)

    Article  ADS  Google Scholar 

  8. B. Poornaprakash, U. Chalapathi, M. Kumar, P.T. Poojitha, J. Mater. Sci. Mater. Electron. 29, 2316–2321 (2018)

    Article  Google Scholar 

  9. S.J. Han, J.W. Song, C.W. Yang, S.H. Park, J.H. Park, Y.H. Jeong, K.W. Rhie, Appl. Phys. Lett. 81(22), 4212–4214 (2002)

    Article  ADS  Google Scholar 

  10. G. Srinet, S. Sharma, J.G. Sanchez, R.G. Diaz, R.P. Perez, J.M. Siqueiros, O.R. Herrera, J. Alloy. Compd. 489, 156587 (2020)

    Article  Google Scholar 

  11. A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009)

    Article  ADS  Google Scholar 

  12. H. Morkoc, U. Ozgur, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley-VCH, 2009).

  13. J. Kennedy, G.V.M. Williams, P.P. Murmu, B.J. Ruck, Phys. Rev. B 88, 214423 (2013)

    Article  ADS  Google Scholar 

  14. J. Kennedy, A. Markwitz, Z. Li, W. Gao, C. Kendrick, S.M. Durbin, R. Reeves, Curr. Appl. Phys. 6, 495–498 (2006)

    Article  ADS  Google Scholar 

  15. J. Kennedy, P.P. Murmu, E. Manikandan, S.Y. Lee, J. Alloys. Compd. 616, 614–617 (2014)

    Article  Google Scholar 

  16. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)

    Article  ADS  Google Scholar 

  17. O. Madelung, Data in Science and Technology: Semiconductors (Springer, Berlin, 1992).

    Google Scholar 

  18. O.D. Jayakumar, C. Sudakar, C. Persson, H.G. Salunke, R. Naik, A.K. Tyagi, Appl. Phys. Lett. 97, 232510 (2010)

    Article  ADS  Google Scholar 

  19. K. Sato, H.K. Yoshida, Jpn. J. Appl. Phys. 40, L334–L336 (2001)

    Article  ADS  Google Scholar 

  20. T. Fukumura, Z. Jin, A. Ohtomo, H. Koinuma, M. Kawasaki, Appl. Phys. Lett. 75, 3366–3368 (1999)

    Article  ADS  Google Scholar 

  21. S.A. Aravindh, U. Schwingenschloegl, I.M. Roqan, J. Appl. Phys. 116, 233906 (2014)

    Article  ADS  Google Scholar 

  22. M.C. Jun, S.U. Park, J.H. Koh, Nanoscale Res. Lett. 7, 639 (2012)

    Article  ADS  Google Scholar 

  23. A.K. Zak, N.S.A. Aziz, A.M. Hashim, F. Kardi, Ceram. Int. 42(12), 13605 (2016)

    Article  Google Scholar 

  24. M. Ohtaki, T. Tsubota, K. Eguchi, H. Arai, J. Appl. Phys. 79, 1816 (1996)

    Article  ADS  Google Scholar 

  25. S. Gupta, R.K. Choubey, L.K. Sharma, M.P. Ghosh, M. Kar, S. Mukherjee, Semiconductor. Sci. Tech. 34, 105006 (2019)

    Article  ADS  Google Scholar 

  26. M.P. Ghosh, S. Kinra, D. Dagur, R.K. Choubey, S. Mukherjee, Phys. Scr. 95, 095812 (2020)

    Article  ADS  Google Scholar 

  27. M.P. Ghosh, S. Mukherjee, J. Magn. Magn. Mater. 498, 166185 (2020)

    Article  Google Scholar 

  28. M.P. Ghosh, S. Mukherjee, J. Am. Ceram. Soc. 102, 7509–7520 (2019)

    Article  Google Scholar 

  29. F. Kayaci, S. Uempati, I. Donmez, N. Biyikli, T. Uyar, Nanoscale 6, 10224 (2014)

    Article  ADS  Google Scholar 

  30. B.D. Cullity, Elements of X-ray diffraction (Addison-Wesley Publications, 1956)

  31. D. Nath, F. Singh, R. Das, Mater. Chem. Phys. 239, 122021 (2020)

    Article  Google Scholar 

  32. F. Izumi, T. Ikeda, Annu. Rep. Adv. Ceram. Res. 3, 33–38 (2015)

    Google Scholar 

  33. Z.L. Wang, Mater. Today 7, 26–33 (2004)

    Article  Google Scholar 

  34. J. Kennedy, P.P. Murmu, J. Leveneur, A. Markwitz, J. Futter, Appl. Surf. Sci. 367, 52–58 (2016)

    Article  ADS  Google Scholar 

  35. B. Qi, S. Olafsson, H.P. Gislason, Prog. Mater. Sci. 90, 45–74 (2017)

    Article  Google Scholar 

  36. X. Zhang, W. Zhang, X. Zhang, X. Wu, F. Meng, C.C. Tang, Adv. Conden. Matter. Phys. 2014, 806327 (2014)

    Google Scholar 

  37. G.Z. Xing, Y.H. Lu, Y.F. Tian, J.B. Yi, C.C. Lim, Y.F. Li, G.P. Li, D.D. Wang, B. Yao, J. Ding, Y.P. Feng, T. Wu, AIP Adv. 1, 022152 (2011)

    Article  ADS  Google Scholar 

  38. R.K. Deepika, K.P. Yadav, P. Vaibhav, S. Sharma, R.K. Singh, S. Kumar, Chin. Phys. B 29, 108503 (2020)

    Article  ADS  Google Scholar 

  39. D. Karmakar, S.K. Mandal, R.M. Kadam, P.L. Paulose, A.K. Rajaranjan, T.K. Nath, A.K. Das, I. Dasgupta, G.P. Das, Phys. Rev. B 75, 144404 (2007)

    Article  ADS  Google Scholar 

  40. P. Kacman, Semicond. Sci. Technol. 16, R25–R39 (2001)

    Article  ADS  Google Scholar 

  41. H. Morkoc, U. Ozgur, Zinc Oxide-Fundamentals, Materials and Device Technology (Wiley-VCH Publishers, 2009).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally in this work.

Corresponding author

Correspondence to Samrat Mukherjee.

Ethics declarations

Conflict of interest

Authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Ghosh, M.P. & Mukherjee, S. Introducing magnetic properties in Fe-doped ZnO nanoparticles. Appl. Phys. A 127, 451 (2021). https://doi.org/10.1007/s00339-021-04580-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04580-z

Keywords

Navigation