Skip to main content

Advertisement

Log in

Structural, magnetic and magnetocaloric study of Sm2Fe17−xNix (x = 0, 0.25, 0.35 and 0.5) compounds

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Magnetic refrigeration could eventually replace the conventional refrigeration, for ecological reasons and for its potential superior efficiency. Iron-rich intermetallic compounds Sm\(_2 \)Fe\(_ {17}\) are considered very interesting candidates for magnetocaloric materials because of their important magnetocaloric properties. For this purpose, three samples of \(\hbox {Sm}_2\hbox {Fe}_{17-x}\hbox {Ni}_x\) (\(x = 0; 0,25;0,35; 0,5\)) were prepared by arc melting and subsequent annealing at 1073 K for a 7 days. Structural analysis by Rietveld method on X-ray diffraction (XRD) has determined that these alloys crystallize in the rhombohedral \(\hbox {Th}_2\hbox {Zn}_{17}\)-type structure (Space group \(R\bar{3}m\)). Measurements of the magnetic properties revealed that the Curie temperature increases, while the unit cell parameters decrease. For each sample, the isothermal magnetization curves have been measured, for different temperatures in the vicinity of the Curie temperature, with an applied field up to 1.5 T. Based on the Arrott plot, these analyses show that \(\hbox {Sm}_2\hbox {Fe}_{17-x}\hbox {Ni}_x\) exhibits a second-order ferromagnetic to paramagnetic phase transition around the Curie temperature. These curves were also used to determine the magnetic entropy change \(\Delta S_M\) and the relative cooling power. For an applied field of 1.5 T, \(\Delta S_M\) increases from 1.5 J/kg.K for \(x=0\) to 4.9 J/kgK for x = 0,5. In addition, the RCP increases monotonously. This is due to an important temperature range for the magnetic phase transition, contributing to a large \(\Delta S_M\) shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Givord, R. Lemaire, IEEE Trans. Magn. 10, 109 (1974)

    Article  ADS  Google Scholar 

  2. E. Burzo, A. Chelkovski, H.R. Kirchmayr, Handbook (Landolt-Bornstein Handbook, Berlin, 1990)

    Google Scholar 

  3. J.M.D. Coey, H. Sun, J. Magn. Magn. Mater. 87, 251 (1990)

    Article  ADS  Google Scholar 

  4. K.H. Buschow, J. Rep. Prog. Phys. 54, 1123 (1991)

    Article  ADS  Google Scholar 

  5. K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005)

    Article  ADS  Google Scholar 

  6. Y. Janssen, S. Chang, A. Kreyssig, A. Kracher, Y. Mozharivskyj, S. Misra, P.C. Canfield, Phys. Rev. B 76, 054420 (2007)

    Article  ADS  Google Scholar 

  7. L. Bessais, E. Dorolti, C. Djega-Mariadassou, J. Appl. Phys. 97, 013902 (2005)

    Article  ADS  Google Scholar 

  8. M. Saidi, K. Nouri, S. Walha, E. Dhahri, A. Kabadou, M. Jemmali, L. Bessais, J. Elec. Mater. 48, 2248 (2019)

    Article  ADS  Google Scholar 

  9. N. Bouchaala, M. Jemmali, T. Bartoli, K. Nouri, I. Hentech, S. Walha, L. Bessais, and A. Ben Salah. J. Solid State Chem. 258, 501 (2018)

    Article  ADS  Google Scholar 

  10. D. Ogawaa, T. Yoshioka, X.D. Xu, Y.K. Takahashi, H. Tsuchiura, T. Ohkubo, S. Hirosawa, K. Hono, J. Magn. Magn. Mater. 497, 165965 (2020)

    Article  Google Scholar 

  11. X.C. Kou, F.R. de Boer, R. Grossinger, G. Wiesinger, H. Suzuki, H. Kitazawa, T. Takamasu, G. Kido, J. Magn. Magn. Mater. 177, 1002 (1998)

    Article  ADS  Google Scholar 

  12. D. Ghanbari, M. Salavati-Niasari, J. Indus. Eng. Chem. 24, 284–292 (2015)

    Article  Google Scholar 

  13. T. Gholami, M. Salavati-Niasari, S. Varshoy, International Journal of Hydrogen Energy 41, 9418–9426 (2016)

    Article  Google Scholar 

  14. A. Abbasi, D. Ghanbari, M. Salavati-Niasari, M. Hamadanian, J. Mater. Sci. Mater. Electron 27, 4800–4809 (2016)

    Article  Google Scholar 

  15. S. Mortazavi-Derazkola, M. Salavati-Niasari, O. Amiri, A. Abbasi, J. Energy Chem. 26, 17–23 (2017)

    Article  Google Scholar 

  16. F. Tavakoli, M. Salavati-Niasari, A. Badiei, F. Mohandes, Mater. Res. Bulletin 63, 51–57 (2015)

    Article  Google Scholar 

  17. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Z. Zinatloo-Ajabshir, Mater. Lett. 180, 27–30 (2016)

    Article  Google Scholar 

  18. S. Chikazumi, Physics of Ferromagnetism, 2nd edn. (Oxford University Press, Oxford, 1997)

    Google Scholar 

  19. E. Burzo, Rep. Prog. Phys 61, 1099 (1998)

    Article  ADS  Google Scholar 

  20. K.H. Buschow, J. Rep. Prog. Phys. 40, 1179 (1977)

    Article  ADS  Google Scholar 

  21. K.H.J. Bushow, Handbook of Magnetic Materials, vol. 4 (Elsevier, Amsterdam, 1988)

    Google Scholar 

  22. E. Belorizky, M.A. Fremy, J.P. Gavigan, D. Givord, H.S. Li, J. Appl. Phys. 61, 3971 (1987)

    Article  ADS  Google Scholar 

  23. C.N. Christodoulou, T. Takeshita, J. Alloys Compd. 191, 279 (1993)

    Article  Google Scholar 

  24. J.J.M. Franse, R.J. Radwanski, K.H.J. Buschow, Handbook Mag. Mater. 7, 307 (1993)

    Google Scholar 

  25. K.H.J. Buschow, Handbook of Magnetic Materials, vol. 10 (Elsevier, 1997)

  26. C. Djega-Mariadassou, L. Bessais, J. Magn. Magn. Mater. 210, 81 (2000)

    Article  ADS  Google Scholar 

  27. J.X. Zhang, L. Bessais, C. Djega-Mariadassou, E. Leroy, A. Percheron-Guegan, Appl. Phys. Lett. 80, 1960 (2002)

    Article  ADS  Google Scholar 

  28. L. Bessais, E. Dorolti, C. Djega-Mariadassou, Appl. Phys. Lett. 87, 192503 (2005)

    Article  ADS  Google Scholar 

  29. X.C. Kou, R. Grossinger, T.H. Jacobs, K.H.J. Buschow, J. Magn. Magn. Mater. 88, 1 (1990)

    Article  ADS  Google Scholar 

  30. L. Bessais, C. Djega-Mariadassou, A. Nandra, M.D. Appay, E. Burzo, Phys. Rev. B 69, 64402 (2004)

    Article  ADS  Google Scholar 

  31. L. Bessais, C. Djega-Mariadassou, H. Lassri, N. Mliki, J. Appl. Phys. 106, 103904 (2009)

    Article  ADS  Google Scholar 

  32. E. Burzo, J. Synch. Investig. 12, 431 (2018)

    Article  Google Scholar 

  33. Y.L. Cao, K. Lin, Z.N. Liu, J.Y. Hu, C.W. Wang, E. Tereshina-Chitrova, K. Kato, Q. Li, J.X. Deng, J. Chen, H.J. Zhang, X.R. Xing, Inorg. Chem. 59, 11228 (2020)

    Article  Google Scholar 

  34. H. Sun, J.M.D. Coey, Y. Otani, D.P.F. Hurley, J. Phys. Condens. Matter 2, 6465 (1990)

    Article  ADS  Google Scholar 

  35. K.H.J. Buschow, R. Coehoorne, D.B. de Mooij, K. de Waard, T.H. Jacons, J. Magn. Magn. Mater. 92, 35 (1990)

    Article  Google Scholar 

  36. Z. Gu, W. Lai, X.F. Zhong, W.Y. Ching, J. Appl. Phys. 73, 6928 (1993)

    Article  ADS  Google Scholar 

  37. M. Kubis, D. Eckert, B. Gebel, K.-H. Müller, L. Schultz, J. Magn. Magn. Mater. 217, 14 (2000)

    Article  ADS  Google Scholar 

  38. H. Chen, Y. Zhang, J. Han, H. Du, Ch. Wang, Y. Yang, J. Magn. Magn. Mater. 320, 1382 (2008)

    Article  ADS  Google Scholar 

  39. P. Alvarez, P. Gorria, V. Franco, J.S. Marcos, M.J. Perez, J.L.S. Llamazares, I.P. Orench, J.A. Blanco, J. Phys. Condens. Matter 22, 216005 (2010)

    Article  ADS  Google Scholar 

  40. M. Saidi, S. Walha, K. Nouri, A. Kabadou, L. Bessais, M. Jemmali, J. Alloys Compd. 792, 87 (2019)

    Article  Google Scholar 

  41. P. Alvarez, P. Gorria, J.S. Marcos, J.L.S. Llamazares, J.A. Blan, J. Phys. Condens. Matter 25, 496010 (2013)

    Article  Google Scholar 

  42. R. Guetari, R. Bez, A. Belhadj, K. Zehani, A. Bezergheanu, N. Mliki, L. Bessais, C.B. Cizmas, J. Alloys Compd. 588, 64 (2014)

    Article  Google Scholar 

  43. S. Charfeddine, K. Zehani, L. Bessais, A. Korchef, J. Solid State Chem. 238, 15 (2016)

    Article  ADS  Google Scholar 

  44. M. Saidi, K. Nouri, S. Walha, L. Bessais, M. Jemmali, J. Alloys Compd. 844, 155754 (2020)

    Article  Google Scholar 

  45. M. Saidi, S. Walha, E.K. Hlil, L. Bessais, M. Jemmali, J. Solid State Chem. 297, 122019 (2021)

    Article  Google Scholar 

  46. A. Herrero, A. Oleaga, A. Provino, I.R. Aseguinolaza, A. Salazar, D. Peddis, P. Manfrinetti, J. Alloys Compd. 865, 158948 (2021)

    Article  Google Scholar 

  47. I.A. Al-Omari, S.S. Jaswal, A.S. Fernando, D.J. Sellmyer, J. Appl. Phys. 76, 6159 (1994)

    Article  ADS  Google Scholar 

  48. L. Bessais, C. Djega-Mariadassou, D.K. Tung, V.V. Hong, N.X. Phuc, J. Alloys Compd. 455, 35 (2008)

    Article  Google Scholar 

  49. I. Nehdi, M. Abdellaoui, C.D. Mariadassou, L. Bessais, H. Zarrouk, Phys. Chem. News 13, 21 (2003)

    Google Scholar 

  50. C.D. Mariadassou, L. Bessais, A. Nandra, J.M. Greneche, E. Burzo, Phys. Rev. B 65, 14419 (2001)

    Article  Google Scholar 

  51. L. Bessais, K. Younsi, S. Khazzan, N. Mliki, Intermetallics 19, 997 (2011)

    Article  Google Scholar 

  52. N. Bouchaala, M. Jemmali, K. Nouri, S. Walha, A. Ben Salah, L. Bessais, J. Phase Equilib. Diffus. 38, 561 (2017)

    Article  Google Scholar 

  53. K. Nouri, M. Jemmali, S. Walha, K. Zehani, L. Bessais, A. Ben Salah, J. Alloys Compd. 661, 508–515 (2016)

    Article  Google Scholar 

  54. K. Nouri, M. Jemmali, S. Walha, A. BenSalah, E. Dhahri, L. Bessais, J. Alloys Compd. 256, 719 (2017)

    Google Scholar 

  55. J. Rodriguez-Carvajal, M.T. Fernandez-Diaz, J.L. Martinez, J. Phys. Condens. Matter 3, 32158 (1991)

    Article  Google Scholar 

  56. J. Rodriguez-Carvajal, Phys. B 192, 55 (1993)

    Article  ADS  Google Scholar 

  57. H. Rietveld, Acta Crystallogr. 22, 151 (1967)

    Article  Google Scholar 

  58. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  Google Scholar 

  59. L. Bessais, S. Sab, C. Djega-Mariadassou, J.M. Greneche, Phys. Rev. B 66, 54430 (2002)

    Article  ADS  Google Scholar 

  60. K. Zehani, R. Bez, A. Boutahar, E.K. Hlil, H. Lassri, J. Moscovici, N. Mliki, L. Bessais, J. Alloys Compd. 75, 1435 (2014)

    Google Scholar 

  61. K.H.J. Buschow, N.V. Philips, J. Less, Common Met. 25, 131 (1971)

    Article  Google Scholar 

  62. K. Nouri, T. Bartoli, A. Chrobak, J. Moscovici, L. Bessais, J. Electron. Mater. 47, 3836 (2018)

    Article  ADS  Google Scholar 

  63. B.P. Hu, X.L. Rao, J.M. Xu, G.C. Liu, F. Cao, X.L. Dong, H. Li, L. Yin, Z.R. Zhao, J. Magn. Magn. Mater. 114, 138 (1992)

    Article  ADS  Google Scholar 

  64. X. Yan, J. Liang, S. Xie, Phys. stat. sol. (a) 134, 77 (1992)

    Article  ADS  Google Scholar 

  65. G. Pokharel, K.S. Syed Ali, S.R. Mishra, J. Magn. Magn. Mater. 382, 31 (2015)

  66. S. Khazzan, N. Mliki, L. Bessais, C. Djega-Mariadassou, J. Magn. Magn. Mater. 322, 224 (2010)

    Article  ADS  Google Scholar 

  67. Z.W. Li, A.H. Morrish, Phys. Rev. B 55, 3670 (1997)

    Article  ADS  Google Scholar 

  68. R.F. Sabirianov, S.S. Jaswal, J. Appl. Phys. 79, 5942 (1996)

    Article  ADS  Google Scholar 

  69. R.F. Sabirianov, S.S. Jaswal, J. Appl. Phys. 81, 5615 (1997)

    Article  ADS  Google Scholar 

  70. R.F. Sabirianov, S.S. Jaswal, Phys. Rev. Lett. 79, 155 (1997)

    Article  ADS  Google Scholar 

  71. Z. Sun, H. Zhang, S. Zhang, J. Wang, B. Shen, J. Phys. D 33, 485 (2000)

    Article  ADS  Google Scholar 

  72. A. Arrott, J.E. Noakes, Phys. Rev. Lett. 19, 786 (1967)

    Article  ADS  Google Scholar 

  73. S.K. Banerjee, Phys. Lett. 16, 12 (1964)

    Google Scholar 

  74. K. Zehani, R. Guetari, N. Mliki, L. Bessais, Phys. Procedia 75, 1435 (2015)

    Article  ADS  Google Scholar 

  75. A.M. Tishin, K.A. Gschneidner, V.K. Pecharsky, Phys. Rev. B 59, 503 (1999)

    Article  ADS  Google Scholar 

  76. K. Nouri, M. Saidi, S. Walha, M. Jemmali, L. Bessais, Chem. Africa 3, 111 (2020)

    Article  Google Scholar 

  77. K. Nouri, M. Jemmali, S. Walha, K. Zehani, A. BenSalah, L. Bessais, J. Alloys Compd. 672, 440 (2016)

    Article  Google Scholar 

  78. K. Nouri, W. Bouzidi, M. Jemmali, I. Hentech, E. Dhahri, L. Bessais, J. Electron. Mater. 47, 1658 (2018)

    Article  ADS  Google Scholar 

  79. Jun Shen, Wu. Jian-Feng, Ji-Rong. Sun, J. Appl. Phys. 106, 083902 (2009)

Download references

Acknowledgements

This work was mainly supported by the CNRS, France, and the Tunisian Ministry of Higher Education and Scientific Research and Technology (LAB MESLAB) (Tunisia-Sfax).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jemmali.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nouri, K., Saidi, M., Bessais, L. et al. Structural, magnetic and magnetocaloric study of Sm2Fe17−xNix (x = 0, 0.25, 0.35 and 0.5) compounds. Appl. Phys. A 127, 442 (2021). https://doi.org/10.1007/s00339-021-04546-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04546-1

Keywords

Navigation