Skip to main content
Log in

Evolution of microstructure, strain and physical properties of quaternary nanoparticles La0.8−xCexAg0.2MnO3 perovskites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the quaternary nanostructure La0.8−xCexAg0.2MnO3 perovskite was synthetized by conventional solid-state method and calcination in air at 900 °C for 24 h. These materials are one member of perovskite-containing manganite, and rare earths and Alkali elements in A and B sites, respectively. The effect of La substitution on the crystallite size and microstrain of the X-ray diffraction (XRD) line broadening is analyzed in different methods. Scanning electron microscope measurements are combined with an energy dispersive X-ray analyzer (EDX) to illustrate the effect of cerium (Ce) atoms adding. Scherrer, Williamson–Hall and size-strain plot methods were used to analyze the line profile of XRD and Rietveld refinement by Fullprof software to determine microstructure parameters of perovskite. The results obtained showed that with the addition of the Ce element, there is no effect on the lattice parameters, which supports the replacement of Ce ions with those of La ion in the unit cell. In addition, the crystal size microstrain and porosity values were systematically decreased with increasing Ce-ion concentrations. The analysis of the surface morphology shows that the process leads to the formation of smaller nanoparticles with two distinguishable size ranges, supporting porosity decrease. These nanoparticles were attributed to pure La0.8−xCexAg0.2MnO3 and the other phases resulting from the interaction of Ce ions. EDX results also indicate that Ce ions have been successfully replaced in La0.8−xCexAg0.2MnO3. Correlation of different results let to conclude that the resulting product can be applied in the future in field of magnetic refrigeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. S. Zhang, T. Sun, F. Ji, G. Dong, Y. Liu, Z. Li, H. Zhang, Q. Chen, X. Liu, J. Alloys Compd. 808, 151709 (2019)

    Google Scholar 

  2. P.G. Radaelli, G. Iannone, M. Marezio, H.Y. Hwang, S.W. Cheong, J.D. Jorgensen, D.N. Argyriou, Phys. Rev. B 56, 8265 (1997)

    ADS  Google Scholar 

  3. G.M. Amara, A. Dhahri, J. Dhahri, E.K. Hlil, RSC Adv. 7, 10928 (2017)

    ADS  Google Scholar 

  4. A. Dhahri, M. Jemmali, E. Dhahri, E.K. Hlil, Dalton Trans. 44, 5620 (2015)

    Google Scholar 

  5. B. Kurniawan, S. Winarsih, A. Imaduddin, A. Manaf, Physica B Condens. Matter 532, 161 (2017)

    ADS  Google Scholar 

  6. J.A. Nieto Camacho, J.A. Cardona Vasquez, A.S. Santos, D.A.L. Tellez, J.R. Rojas, J. Mater. Res. Technol. 9, 10686 (2020)

    Google Scholar 

  7. T. Dippong, E.A. Levei, L. Diamandescu, I. Bibicu, C. Leostean, G. Borodi, L.B. Tudoran, J. Magn. Magn. Mater. 394, 111 (2015)

    ADS  Google Scholar 

  8. T. Dippong, E.A. Levei, O. Cadar, J. Chem. (2017). https://doi.org/10.1155/2017/7943164

    Article  Google Scholar 

  9. T. Dippong, O. Cadarb, E.A. Leveib, I.-G. Deac, G. Borodi, Ceram. Int. 44, 10478 (2018)

    Google Scholar 

  10. C.B. Larsen, S. Samothrakitis, A.D. Fortes, A.O. Ayaş, M. Akyol, A. Ekicibil, M. Laver, J. Magn. Magn. Mater. 498, 166192 (2020)

    Google Scholar 

  11. T.A. Salaheldin, A.A. Ghani, A.E.-R.T. AboZied, A.I. Ali, J. Therm. Anal. Calorim. 136, 621 (2019)

    Google Scholar 

  12. N. Ibrahim, A.K. Yahya, Ceram. Int. 39, S181 (2013)

    Google Scholar 

  13. A.E.-R.T. AboZied, A.A. Ghani, A.I. Ali, T.A. Salaheldin, J. Magn. Magn. Mater. 479, 260 (2019)

    ADS  Google Scholar 

  14. T. Tang, K.M. Gu, Q.Q. Cao, D.H. Wang, S.Y. Zhang, Y.W. Du, J. Magn. Magn. Mater. 222, 110 (2000)

    ADS  Google Scholar 

  15. N. A. Sahara and B. Kurniawan, in IOP Conference Series: Materials Science and Engineering (IOP Publishing, 2019), p. 12004.

  16. R. Skini, A. Omri, M. Khlifi, E. Dhahri, E.K. Hlil, J. Magn. Magn. Mater. 364, 5 (2014)

    ADS  Google Scholar 

  17. A.G. Gamzatov, A.M. Aliev, P.D.H. Yen, K.X. Hau, K.E. Kamaludinova, T.D. Thanh, N.T. Dung, S.-C. Yu, J. Magn. Magn. Mater. 474, 477 (2019)

    ADS  Google Scholar 

  18. O.A. Bechambi, A. Touati, S.I. Sayadi, W. Najjar, Mater. Sci. Semicond. Proc. 39, 807 (2015)

    Google Scholar 

  19. J. Sun, Z. Zhao, Y. Li, X. Yu, L. Zhao, J. Li, Y. Wei, J. Liu, J. Rare Earths (2019). https://doi.org/10.1016/j.jre.2019.05.014

    Article  Google Scholar 

  20. H. Choi, A. Fuller, J. Davis, C. Wielgus, U.S. Ozkan, Appl. Catal. B 127, 336 (2012)

    Google Scholar 

  21. A.E. Irmak, A. Coskun, E. Tasarkuyu, S. Akturk, G. Unlu, Y. Samancioglu, C. Sarikurkcu, B.M. Kaynar, A. Yucel, J. Magn. Magn. Mater. 322, 945 (2010)

    ADS  Google Scholar 

  22. M. Jebli, C. Rayssi, N. Hamdaoui, S. Rabaoui, J. Dhahri, M. Ben Henda, I. Shaarany, J. Alloys Compd. 784, 204 (2019)

    Google Scholar 

  23. F. Gaâbel, M. Khlifi, N. Hamdaoui, K. Taibi, J. Dhahri, J. Alloys Compd. 828, 154373 (2020)

    Google Scholar 

  24. T. Dippong, O. Cadar, E.A. Levei, I.G. Deac, J. Magn. Magn. Mater. 498, 166168 (2020)

    Google Scholar 

  25. M.F. Hassan, K. Sheng Chan, Sci. Res. J. 16, 13 (2019)

    Google Scholar 

  26. M. Saleem, D. Varshney, RSC Adv. 8, 1600 (2018)

    ADS  Google Scholar 

  27. V. Senthilkumar, P. Vickraman, J.J. Prince, M. Jayachandran, C. Sanjeeviraja, Philos. Mag. Lett. 90, 337 (2010)

    ADS  Google Scholar 

  28. M. Rasadujjaman, M. Shahjahan, M.K.R. Khan, M.M. Rahman, Shahjalal Univ. Sci. Technol. 20, 1 (2012)

    Google Scholar 

  29. Y. Chen, S.H. Zhang, H. Song, M. Cheng, H. Li, J. Liu, Mater. Des. 91, 314 (2016)

    Google Scholar 

  30. P.K.K. Kumarasinghe, A. Dissanayake, B.M.K. Pemasiri, B.S. Dassanayake, Mater. Sci. Semicond. Proc. 58, 51 (2017)

    Google Scholar 

  31. M.A. Islam, Q. Huda, M.S. Hossain, M.M. Aliyu, M.R. Karim, K. Sopian, N. Amin, Curr. Appl. Phys. 13, S115 (2013)

    ADS  Google Scholar 

  32. J.P. Enriquez, N.R. Mathews, G.P. Hernández, X. Mathew, Mater. Chem. Phys. 142, 432 (2013)

    Google Scholar 

  33. J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li, Chem. Mater. 18, 867 (2006)

    Google Scholar 

  34. Z. Zhang, C. Zhong, Y. Deng, L. Liu, Y. Wu, W. Hu, RSC. Adv. 3, 6763 (2013)

    ADS  Google Scholar 

  35. A. Chen, G. Yang, H. Long, P. Lu, W. Zhang, H. Wang, Mater. Lett. 91, 319 (2013)

    Google Scholar 

  36. S. Eisermann, A. Kronenberger, A. Laufer, J. Bieber, G. Haas, S. Lautenschlager, G. Homm, P.J. Klar, B.K. Meyer, Phys. Status Solidi A 209, 531 (2011)

    ADS  Google Scholar 

  37. A. Musa, T. Akomolafe, M. Carter, Sol. Energy Mater. Sol. Cells 5, 305 (1998)

    Google Scholar 

  38. A.A. Akl, A.S. Hassanien, Superlattice Microst. 85, 67 (2015)

    ADS  Google Scholar 

  39. B.R. Rehani, P.B. Joshi, N.L. Kirit, A. Pratap, Indian J. Pure Appl. Phys. 44, 157 (2006)

    Google Scholar 

  40. T. Dippong, O. Cadar, E.A. Levei, I.G. Deacc, F. Gogad, G. Borodie, L.B. Tudoran, Ceram. Int. 7458, 45 (2019)

    Google Scholar 

  41. Y.T. Prabhu, K.V. Rao, V.S.S. Kumar, B.S. Kumari, J. Nanosci. Nanotechnol. 4, 21 (2014)

    Google Scholar 

  42. B.E. Warren, X-Ray Diffraction, Series in Metallurgy and Materials Engineering (Addison Wesly Publishing. Co., London, 1969), pp. 18–24

    Google Scholar 

  43. B.D. Cullity, Elements of X-Ray Diffraction, 2nd edn, (Addison-Wesley Publishing Company, Inc.,1978) pp. 99.

  44. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, Oxford, 1985).

    MATH  Google Scholar 

  45. A.A. Akl, S.A. Mahmoud, S.M. Al-Shomar, A.S. Hassanien, Mat. Sci. Semicond. Proc. 74, 183 (2018)

    Google Scholar 

  46. A.A. Akl, I.M. El Radaf, A.S. Hassanien, Superlattice Microst. 143, 106544 (2020)

    Google Scholar 

  47. A.S. Hassanien, A.A. Akl, A.H. Saaedi, CrystEngComm 20, 1716 (2018)

    Google Scholar 

  48. M. Sniureviciute, J. Laurikaitienė, D. Adlienė, L. Augulis, Z. Rutkūniene, A. Jotautis, Vaccum 83, S159 (2009)

    ADS  Google Scholar 

  49. C. Solliard, M. Flueli, Surf. Sci. 156, 487 (1985)

    ADS  Google Scholar 

  50. A.K. Srivastav, N. Chawake, B.S. Murty, Scr. Mater. 98, 20 (2015)

    Google Scholar 

  51. W.G. Schlecht, Am. Mineral. J. Earth Planet. Mater. 29, 108 (1944)

    Google Scholar 

  52. S.-R. Jian, G.-J. Chen, W.-M. Hsu, Materials 6, 4505 (2013)

    ADS  Google Scholar 

  53. C.S.Barrett, T.B.Massalski, Structure of Metals, 3rd revised edition (Pergamon, press Oxford, new York, Tronto, Sudney, Paris, Frankfurt,/M (1980), p. 204

  54. R.B. Koron’ska, Y. Natanzon, Phase Transit. 81, 1117 (2008)

    Google Scholar 

  55. A.S. Hassanien, A.A. Akl, Phys. B 473, 11 (2015)

    ADS  Google Scholar 

  56. E. Cesari, C. Segui, J. Pons and F. Perell 6, Le J. de physique IV, 6, 381 (1996)

  57. A.S. Hassanien, A.A. Akl, J. Alloys Compd. 648, 280 (2015)

    Google Scholar 

  58. A.A. Akl, A.S. Hassanien, Int. J. 2, 1 (2014)

    Google Scholar 

  59. A.S. Hassanien, A.A. Akl, CrystEngComm 20, 7120 (2018)

    Google Scholar 

  60. S. Ilican, Y. Caglar, M. Caglar, J. Optoelectron. Adv. Mater. 10, 2578 (2008)

    Google Scholar 

  61. R. Haynes, Powder Metall. 20, 17 (1977)

    Google Scholar 

  62. Z. Brytan, L.A. Dobrzański, M.A. Grande, M. Rosso, J. Ach. Mater. Manuf. Eng. 37, 387 (2009)

    Google Scholar 

  63. K. Christian, R. German, Int. J. Powder Metall. 31, 51 (1995)

    Google Scholar 

  64. H. Gonobadi, Life. Sci. J. 10, 86 (2013)

    Google Scholar 

  65. S.M. Salili, A. Ataie, M.R. Barati, Z. Sadighi, Mater. Charact. 106, 78 (2015)

    Google Scholar 

  66. Y. Regaiega, M. Koubaa, W.C. Koubaaa, A. Cheikhrouhou, L. Sicard, S.A. Merah, F. Herbst, Mater. Chem. Phys. 132, 839 (2012)

    Google Scholar 

  67. S. Bases, S. Durmus, A. Dalmaz, M. Ozdincer, S. Sivrikaya, CBU J. Sci. 13, 25 (2017)

    Google Scholar 

  68. A. Rostamnejadi, Supercond. Nov. Magn. 29, 2119 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nejeh Hamdaoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdaoui, N., Azizian-Kalandaragh, Y., Zaidi, B. et al. Evolution of microstructure, strain and physical properties of quaternary nanoparticles La0.8−xCexAg0.2MnO3 perovskites. Appl. Phys. A 127, 377 (2021). https://doi.org/10.1007/s00339-021-04518-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04518-5

Keywords

Navigation