Skip to main content
Log in

Electric-field-enhanced permittivity dependence on temperature and cooling rate

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The electric-field-enhanced effect of permittivity is one of the most important physical properties of KTa1-xNbxO3 in paraelectric, thus greatly affecting the performance of electro-optic modulator and deflector. We studied the temperature dependence of the electric-field-enhanced effect and the effect of supercooling on it. We found that this enhanced effect is closely related to the Fröhlich entropy, with a minimum value that corresponds to the strongest field enhancement effect. We further discovered that supercooling could improve the field-enhanced effect by 15%, because of the small polar nanoregion (PNR) size and high polarization. In addition, we propose a novel model to describe the electric-field-enhanced characteristic of the permittivity. The model can well explain the enhanced permittivity under DC electric field and reveal that the field enhancement of permittivity is mainly caused by reorientation of PNRs gradually activated by the DC electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Y.C. Chang, C. Wang, S. Yin, R.C. Hoffman, A.G. Mott, Opt Lett 38, 4574 (2013)

    Article  ADS  Google Scholar 

  2. E. DelRe, E. Spinozzi, A.J. Agranat, C. Conti, Nat. Photonics 5, 39 (2010)

    Article  ADS  Google Scholar 

  3. J. Parravicini, A.J. Agranat, C. Conti, E. DelRe, Appl. Phys. Lett. 101, 111104 (2012)

    Article  ADS  Google Scholar 

  4. E. DelRe, F. Di Mei, J. Parravicini, G. Parravicini, A.J. Agranat, C. Conti, Nat. Photonics 9, 228 (2015)

    Article  ADS  Google Scholar 

  5. Y.C. Chang, C. Wang, S. Yin, R.C. Hoffman, A.G. Mott, Opt. Express 21, 17760 (2013)

    Article  ADS  Google Scholar 

  6. S. Yin, Y.C. Chang, S. Yin, R. C. Hoffman, A. G. Mott and R. Guo, In Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications VII (2013).

  7. K. Nakamura, J. Miyazu, M. Sasaura, K. Fujiura, Appl. Phys. Lett. 89, 131115 (2006)

    Article  ADS  Google Scholar 

  8. N. Sapiens, A. Weissbrod, A. Agranat, Opt. Lett. 34, 353 (2009)

    Article  ADS  Google Scholar 

  9. S. Yin, R. Guo, Y.C. Chang, W. Zhu, J.H. Chao, S. Yin, R. C. Hoffman, A. G. Mott and C. Luo, in Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications VIII (2014).

  10. W. Zhu, J.H. Chao, C.J. Chen, S. Yin, R.C. Hoffman, Sci. Rep. 6, 33143 (2016)

    Article  ADS  Google Scholar 

  11. C.J. Chen, J.H. Chao, Y.G. Lee, A. Shang, R. Liu, S. Yin, R.C. Hoffman, Opt. Lett. 44, 5557 (2019)

    Article  ADS  Google Scholar 

  12. J.H. Chao, W. Zhu, C.J. Chen, A.L. Campbell, M.G. Henry, S. Yin, R.C. Hoffman, Opt. Express 25, 15481 (2017)

    Article  ADS  Google Scholar 

  13. P. Tan, H. Tian, C. Mao, C. Hu, X. Meng, L. Li, G. Shi, Z. Zhou, Appl. Phys. Lett. 111, 012903 (2017)

    Article  ADS  Google Scholar 

  14. G. Samara, J. Phys. Condens. Matter. 15, 367 (2003)

    Article  ADS  Google Scholar 

  15. J. Miyazu, S. Kawamura, T. Imai, J. Kobayashi, Jpn. J. Appl. Physics. 52, 0kc903 (2013)

    Article  Google Scholar 

  16. A. Tagantsev, A. Glazounov, Phys. Rev. B 57, 18 (1998)

    Article  ADS  Google Scholar 

  17. A.E. Glazounov, A.K. Tagantsev, Ferroelectrics 221, 57 (1999)

    Article  Google Scholar 

  18. J. Macutkevic, J. Banys, A. Bussmann-Holder, A.R. Bishop, Phys. Rev. B 83, 184301 (2011)

    Article  ADS  Google Scholar 

  19. H. Tian, B. Yao, C. Hu, X. Meng, Z. Zhou, Appl. Phys. Express 7, 062601 (2014)

    Article  ADS  Google Scholar 

  20. P. Tan, H. Tian, Y. Wang, X. Meng, F. Huang, X. Cao, C. Hu, L. Li, Z. Zhou, Opt. Lett. 43, 5009 (2018)

    Article  ADS  Google Scholar 

  21. K.M. Johnson, J. Appl. Phys. 33, 2826 (1962)

    Article  ADS  Google Scholar 

  22. C. Ang, Z. Yu, Phys. Rev. B 69, 174109 (2004)

    Article  ADS  Google Scholar 

  23. M. Narayanan, S. Tong, B. Ma, S. Liu, U. Balachandran, Appl. Phys. Lett. 100, 022907 (2012)

    Article  ADS  Google Scholar 

  24. Y. Ni, H.T. Chen, Y.P. Shi, L.H. He, A.K. Soh, J. Appl. Phys. 113, 224104 (2013)

    Article  ADS  Google Scholar 

  25. I.B. Bersuker, Appl. Phys. Lett. 107, 202904 (2015)

    Article  ADS  Google Scholar 

  26. P. Tan, H. Tian, F. Huang, X. Meng, Y. Wang, C. Hu, X. Cao, L. Li, Z. Zhou, Phys. Rev. Appl. 11, 024037 (2019)

    Article  ADS  Google Scholar 

  27. W. Kleemann, Phys. Status Solidi (b) 251, 1993 (2014)

    Article  ADS  Google Scholar 

  28. L.E. Cross, Ferroelectrics 76, 241 (1987)

    Article  Google Scholar 

  29. W. Kleemann, F.J. Schäfer, M.D. Fontana, Phys. Rev. B 30, 1148 (1984)

    Article  ADS  Google Scholar 

  30. R. Resta, M. Posternak, A. Baldereschi, Phys. Rev. Lett. 70, 1010 (1993)

    Article  ADS  Google Scholar 

  31. H. Uwe, K.B. Lyons, H.L. Carter, P.A. Fleury, Phys. Rev. B Condens. Matter. 33, 6436 (1986)

    Article  ADS  Google Scholar 

  32. R. Ohta, J. Zushi, T. Ariizumi, S. Kojima, Appl. Phys. Lett. 98, 092909 (2011)

    Article  ADS  Google Scholar 

  33. V. Fridkin, S. Ducharme, Phys. Solid State 43, 1320 (2001)

    Article  ADS  Google Scholar 

  34. Q. Hu, J. Bian, L. Jin, Y. Zhuang, Z. Huang, G. Liu, V.Y. Shur, Z. Xu, X. Wei, Ceram. Int. 44, 922 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 61805284; No. 51772172; No. 51972179).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YiShuo Song.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Du, X., Wang, X. et al. Electric-field-enhanced permittivity dependence on temperature and cooling rate. Appl. Phys. A 127, 386 (2021). https://doi.org/10.1007/s00339-021-04503-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04503-y

Keywords

Navigation