Skip to main content
Log in

Graphene doped (Bi2Te3–Bi2O3–TeO2): PVP dielectrics in metal–semiconductor structures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To determine the influence of the thin polymer interface film on the electrical and dielectric characteristics of the Al/p-Si MS structure, the Graphene doped (Bi2Te3–Bi2O3–TeO2): PVP film was deposited on the silicon substrate using the spin-coating method. The mean size of these nanostructures was found less than 50 nm using the XRD method. EDX profile shows that the structure of Bi2Te3–Bi2O3–TeO2 consists of the bismuth (Bi), tellurium (Te), and oxygen (O) atoms and also not consists of other impurities or compounds. The key electrical and dielectric parameters of metal–semiconductor (MS) and metal-polymer/semiconductor nanocomposite structures were examined using IV and Zf analyses. The values of saturation-current (I0), barrier-height (BH) at zero-bias (ΦB0), ideality factor (n), series and shunt resistances (Rs, Rsh) data for both structures were derived from the IV experiments at ± 6 V voltage scales and compared with them. The energy distributions of interface state density (Dit) were also acquired from the voltage-dependent ΦB(V) and n(V) data. Finally, the frequency dependence of complex dielectric (ε* = ε′ − ″) and electric modulus (M* = M′ + jM″), dielectric loss tangent (tanδ), and ac electrical conductivity (σac) values were evaluated from the Cf and G/ωf experiments for both structures at 102106 Hz frequency scale. The results depict that the Bi2Te3–Gr: PVP organic layer improves the quality of the MS structure as it reduces the leakage current, n, and Dit and increases the Rsh, BH, and ε′.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. V. Baranwal, S. Kumar, A. Pandey, D. Kanjilal, Effect of ion irradiation on current–voltage characteristics of Au/n-GaN Schottky diodes. J. Alloys Compd. 480, 962–965 (2009)

    Google Scholar 

  2. S. Demirezen, E. Tanrıkulu, Ş Altındal, The study on negative dielectric properties of Al/PVA (Zn-doped)/p-Si (MPS) capacitors. Indian J. Phys. 93, 739–747 (2019)

    ADS  Google Scholar 

  3. Y. Azizian-Kalandaragh,  Dielectric properties of CdS-PVA nanocomposites prepared by ultrasound-assisted method. Optoelectron Adv Mater Rapid Commun 4(11), 1655–1658 (2010)

    Google Scholar 

  4. G. Pirgholi-Givi, Ş Altındal, M.S. Asl, A.S. Namini, J. Farazin, Y. Azizian-Kalandaragh, The effect of cadmium impurities in the (PVP–TeO2) interlayer in Al/p-Si (MS) Schottky barrier diodes (SBDs): Exploring its electrophysical parameters. Phys. B.: Condens. Matter. 604, 412617 (2020)

    Google Scholar 

  5. A. Tataroğlu, Ş Altındal, Y. Azizian-Kalandaragh, Comparison of electrical properties of MS and MPS type diode in respect of (In2O3–PVP) interlayer. Phys. B 576, 411733 (2020)

    Google Scholar 

  6. A.B. Uluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, Ş Altındal, On the conduction mechanisms of Au/(Cu2O–CuO–PVA)/n-Si (MPS) Schottky barrier diodes (SBDs) using current–voltage–temperature (I–V–T) characteristics. J. Mater. Sci.: Mater. Electron. 29, 159–170 (2018)

    Google Scholar 

  7. S. Alptekin, Ş Altındal, A Comparative study on current/capacitance: Voltage characteristics of Au/n-Si (MS) structures with and without PVP interlayer. J. Mater. Sci: Mater. Electron. 30(7), 6491–6499 (2019)

    Google Scholar 

  8. S. Altındal Yerişkin, M. Balbaşı, İ Orak, The effects of graphene doped pva interlayer on the determinative electrical parameters of the Au/n Si (MS) structures at room temperature. J. Mater. Sci. Mater. Electron 28(18), 14040–14048 (2017)

    Google Scholar 

  9. A.S. Namini, M.S. Asl, G. Pirgholi-Givi, S.A. Delbari, J. Farazin, Ş Altindal, Y. Azizian-Kalandaragh, On the electrical characteristics of Al/p-Si diodes with and without (PVP: Sn-TeO2) interlayer by using current-voltage (I–V) measurements. App. Phy. A 126(12), 1–9 (2020)

    Google Scholar 

  10. J. Du, Y. Bai, W. Chu, L. Qiao, The microstructure and performance of solid-state hydrogen sensor using CH3COONH4-doped chitosan as electrolyte. J. Appl. Electrochem. 41, 183–187 (2011)

    Google Scholar 

  11. J.H. Kwon, J.Y. An, H. Jang, S. Choi, D.S. Chung, M.J. Lee, H.J. Cha, J.H. Park, C.E. Park, Y.H. Kim, Development of a new conjugated polymer containing dialkoxynaphthalene for efficient polymer solar cells and organic thin film transistors. J. Polym. Sci. Part A: Polym. Chem. 49, 1119–1128 (2011)

    ADS  Google Scholar 

  12. V. Tamilavan, P. Sakthivel, Y. Li, M. Song, C.H. Kim, S.H. Jin, M.H. Hyun, Synthesis and characterization of indenofluorene-based copolymers containing 2, 5-bis (2-thienyl)-N-arylpyrrole for bulk heterojunction solar cells and polymer light-emitting diodes. J. Polym. Sci. Part A: Polym. Chem. 48, 3169–3177 (2010)

    ADS  Google Scholar 

  13. P. Anuragudom, J. El-daye, P. Chinwangso, R.C. Advincula, S. Phanichphant, T.R. Lee, New light-emitting poly {(9, 9-di-n-octylfluorenediyl vinylene)-alt-[1, 5-(2, 6-dioctyloxy) naphthalene vinylene]}. Polym. Int. 60, 660–665 (2011)

    Google Scholar 

  14. S.-S. Li, Y.-Y. Lin, W.-F. Su, C.-W. Chen, Polymer/metal oxide nanocrystals hybrid solar cells. IEEE J. Sel. Top. Quantum Electron. 16, 1635–1640 (2010)

    ADS  Google Scholar 

  15. A. Kaya, S. Alialy, S. Demirezen, M. Balbaşı, S. Altındal Yerişkin, A. Aytimur, The investigation of dielectric properties and ac conductivity of Au/GO-doped PrBaCoO nanoceramic/n-Si capacitors using impedance spectroscopy method. Ceram. Int. 42(2), 3322–3329 (2016)

    Google Scholar 

  16. Ö. Sevgili, İ Taşçıoğlu, S. Boughdachi, Y. Azizian-Kalandaragh, Ş Altındal, Examination of dielectric response of Au/HgS-PVA/n-Si (MPS) structure by impedance spectroscopy method. Phys. B 566, 125–135 (2019)

    ADS  Google Scholar 

  17. Y. Azizian-Kalandaragh, J. Farazin, Ş Altindal, M.S. Asl, G. Pirgholi-Givi, S.A. Delbari, A.S. Namini, Electrical and dielectric properties of Al/(PVP: Zn-TeO2)/p-Si heterojunction structures using current–voltage (I–V) and impedance-frequency (Z–f) measurements. Appl. Phys. A 126, 1–11 (2020)

    Google Scholar 

  18. E.G. Bittle, J.I. Basham, T.N. Jackson, O.D. Jurchescu, D.J. Gundlach, Mobility overestimation due to gated contacts in organic field-effect transistors. Nat. Commun. 7, 10908 (2016)

    ADS  Google Scholar 

  19. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)

    ADS  Google Scholar 

  20. J.-H. Lin, J.-J. Zeng, Y.-C. Su, Y.-J. Lin, Current transport mechanism of heterojunction diodes based on the reduced graphene oxide-based polymer composite and n-type Si. Appl. Phys. Lett. 100, 153509 (2012)

    ADS  Google Scholar 

  21. A. Buyukbas-Ulusan, I. Taşçıoğlu, A. Tataroğlu, F. Yakuphanoğlu, S. Altındal, A comparative study on the electrical and dielectric properties of Al/Cd-doped ZnO/p-Si structures. J. Mater. Sci.: Mater. Electr. (2019). https://doi.org/10.1007/s10854-019-01570-z

    Article  Google Scholar 

  22. P. Gong, Y.H. Jia, S.L. Li, W.D. Ma, Y.Y. Yang, X.Y. Fang, M.S. Cao, Effects of hydroxyl groups and hydrogen passivation on the structure electrical and optical properties of silicon carbide nanowires. Phys. Lett. A (2019). https://doi.org/10.1016/j.physleta.2019.126106

    Article  Google Scholar 

  23. A. Büyükbaş-Uluşan, A. Tataroğlu, Y. Azizian-Kalandaragh, M. Koşal, Double-exponential current–voltage (I–V) and negative capacitance (NC) behavior of Al/(CdSe-PVA)/p-Si/Al (MPS) structure. J. Mater. Sci.: Mater. Electron. 30, 9572–9581 (2019)

    Google Scholar 

  24. S. Nezhadesm-Kohardafchahi, S. Farjami-Shayesteh, Y. Badali, Ş Altındal, M. Jamshidi-Ghozlu, Y. Azizian-Kalandaragh, Formation of ZnO nanopowders by the simple ultrasound-assisted method: exploring the dielectric and electric properties of the Au/(ZnO–PVA)/n-Si structure. Mater. Sci. Semicond. Process. 86, 173–180 (2018)

    Google Scholar 

  25. E.E. Tanrıkulu, Ş Altındal, Y. Azizian-Kalandaragh, Preparation of (CuS–PVA) interlayer and the investigation their structural, morphological and optical properties and frequency dependent electrical characteristics of Au/(CuS–PVA)/n-Si (MPS) structures. J. Mater. Sci.: Mater. Electron. 29, 11801–11811 (2018)

    Google Scholar 

  26. S. Ashok, J. Borrego, R. Gutmann, Electrical characteristics of GaAs MIS Schottky diodes. Solid-State. Electro. 22(7), 621–631 (1979)

    ADS  Google Scholar 

  27. M. Gökçen, T. Tunç, Ş Altındal, I. Uslu, The effect of PVA (Bi2O3-doped) interfacial layer and series resistance on electrical characteristics of Au/n-Si (110) Schottky barrier diodes (SBDs). Curr. Appl. Phys. 12, 525–530 (2012)

    ADS  Google Scholar 

  28. S. Altındal Yeriskin, H.I. Unal, B. Sari, Electrical and dielectric characteristics of Al/polyindole Schottky barrier diodes II frequency dependence. J. App. Polym. Sci. 120, 390–396 (2011)

    Google Scholar 

  29. B. Coşkun, K. Mensah-Darkwa, M. Soylu, A.G. Al-Sehemi, A. Dere, A. Al-Ghamdi, R. Gupta, F. Yakuphanoglu, Optoelectrical properties of Al/p-Si/Fe: N doped ZnO/Al diodes. Thin Solid Films 653, 236–248 (2018)

    ADS  Google Scholar 

  30. S. Altindal, J. Farazin, G. Pirgholi-Givi, E. Maril, Y. Azizian-Kalandaragh, The effects of (Bi2Te3–Bi2O3–TeO2–PVP) interfacial film on the dielectric and electrical features of Al/p-Si (MS) Schottky barrier diodes (SBDs). Phys. B Condens. Mat. 582, 411958 (2020)

    Google Scholar 

  31. S.M. Sze, Semiconductor Devices: Physics and Technology (Wiley, New Jersey, 2008).

    Google Scholar 

  32. E Rhoderick R Williams MS Contacts 1988 Oxford Clarendon

  33. Ç. Bilkan, Y. Badali, S. Fotouhi-Shablou, Y. Azizian-Kalandaragh, Ş Altındal, On the temperature dependent current transport mechanisms and barrier inhomogeneity in Au/SnO2–PVA/n-Si Schottky barrier diodes. Appl. Phys. A 123, 560 (2017)

    ADS  Google Scholar 

  34. S. Demirezen, I. Orak, Y. Azizian-Kalandaragh, Ş Altındal, Series resistance and interface states effects on the C–V and G/w–V characteristics in Au/(Co3O4-doped PVA)/n-Si structures at room temperature. J. Mater. Sci.: Mater. Electron. 28, 12967–12976 (2017)

    Google Scholar 

  35. E.A. Akhlaghi, Y. Badali, S. Altindal, Y. Azizian-Kalandaragh, Preparation of mixed copper/PVA nanocomposites as an interface layer for fabrication of Al/Cu-PVA/p-Si Schottky structures. Phys. B 546, 93–98 (2018)

    ADS  Google Scholar 

  36. S. Boughdachi, Y. Badali, Y. Azizian-Kalandaragh, Ş Altındal, Current-Transport Mechanisms of the Al/(Bi2S3–-PVA Nanocomposite)/p-Si Schottky diodes in the temperature range between 220 K and 380 K. J. Electron. Mater. 47, 6945–6953 (2018)

    ADS  Google Scholar 

  37. A. Buyukbas-Uluşan, S. Altındal, A. Yerişkin, M. Tataroğlu, B.Y.A. Kalandaragh, Electrical and impedance properties of mps structure based on(Cu2o–CuO–PVA) interfacial layer. J. Mater. Sci.: Mater. Electron 29, 8234–8243 (2018)

    Google Scholar 

  38. Y. Azizian-Kalandaragh, Dielectric properties of CdS-PVA nanocomposites prepared by ultrasound-assisted method. Optoelectron Adv Mater Rapid Commun 4, 1655–1658 (2010)

    Google Scholar 

  39. N. Baraz, İ Yücedağ, Y. Azizian-Kalandaragh, Ş Altındal, Determining electrical and dielectric parameters of dependence as function of frequencies in Al/ZnS-PVA/p-Si (MPS) structures. J. Mater. Sci.: Mater. Electron. 28, 1315–1321 (2017)

    Google Scholar 

  40. Ç. Bilkan, Ş Altındal, Y. Azizian-Kalandaragh, Investigation of frequency and voltage dependence surface states and series resistance profiles using admittance measurements in Al/p-Si with Co3O4-PVA interlayer structures. Phys. B 515, 28–33 (2017)

    ADS  Google Scholar 

  41. H. Card, E. Rhoderick, Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes. J. Phys. D Appl. Phys. 4, 1589 (1971)

    ADS  Google Scholar 

  42. T.B. Singh, F. Meghdadi, S. Günes, N. Marjanovic, G. Horowitz, P. Lang, S. Bauer, N.S. Sariciftci, High-performance ambipolar pentacene organic field-effect transistors on poly (vinyl alcohol) organic gate dielectric. Adv. Mater. 17, 2315–2320 (2005)

    Google Scholar 

  43. M. Gökçen, H. Altuntaş, Ş Altındal, S. Özçelik, Frequency and voltage dependence of negative capacitance in Au/SiO2/n-GaAs structures. Mater. Sci. Semicond. Process. 15, 41–46 (2012)

    Google Scholar 

  44. G.E. Demir, İ Yücedağ, Y. Azizian-Kalandaragh, Ş Altındal, Temperature and Interfacial Layer effects on the electrical and dielectric Properties of Al/(CdS-PVA)/p-Si (MPS) structures. J. Electron. Mater. 47, 6600–6606 (2018)

    ADS  Google Scholar 

  45. K. Prabakar, S.K. Narayandass, D. Mangalaraj, Dielectric properties of Cd0.6Zn0.4Te thin films. Physica. Status Solidi. 199, 507–514 (2003)

    ADS  Google Scholar 

  46. L.L. Hench, J.L. West, Principles of Electronic Cremaics (Willey, New York, 1990).

    Google Scholar 

  47. Md.M. Hoque, A. Dutta, S. Kumar, T.P. Sinha, Dielectric relaxation and conductivity of Ba(Mg1/3Ta2/3) O3 and Ba(Zn1/3Ta2/3) O3. J. Mater. Sci. Tecnol. 30, 311–320 (2014)

    Google Scholar 

  48. H.N. Chandrakala, B. Ramaraj, G.M. MadhuShivakumaraiahSiddaramaiah, The influence of zinc oxide-cerium oxide nanoparticles on the structural characteristics and electrical properties of polyvinyl alcohol films. J. Mater. Sci. 47(23), 8076–8084 (2012)

    ADS  Google Scholar 

  49. Bo. Wen, M. Cao, Lu. Mingming, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X.F.W. Wang, J. Yuan, Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26, 3484–3489 (2014)

    Google Scholar 

  50. M. Cao, X. Wang, W. Cao, X. Fang, Bo. Wen, J. Yuan, Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14, 1800987 (2018)

    Google Scholar 

  51. M.-S. Cao, X.-X. Wang, M. Zhang, J.-C. Shu, W.-Q. Cao, H.-J. Yang, X.-Y. Fang, J. Yuan, Electromagnetic response and energy conversion for functions and devices in low-dimensional materials. Adv. Funct. Mater. 29, 1807398 (2019)

    Google Scholar 

Download references

Acknowledgements

This study was supported by Gazi University Scientific Research Project. (Project Number: GU-BAP.05/2019-26).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yashar Azizian-Kalandaragh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Badali, Y., Farazin, J., Pirgholi-Givi, G. et al. Graphene doped (Bi2Te3–Bi2O3–TeO2): PVP dielectrics in metal–semiconductor structures. Appl. Phys. A 127, 695 (2021). https://doi.org/10.1007/s00339-021-04400-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04400-4

Keywords

Navigation