Skip to main content
Log in

Synthesis, microstructure analysis, electrical and magnetic properties of Ni0.5Mg0.5Fe2O4 – BaTiO3 Nano-composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Multiferroic nano-composites with chemical formula (x) Ni0.5Mg0.5Fe2O4 (NMFO) + (1-x) BaTiO3 (BTO); (x = 10, 20, 30 and 40%) were prepared via sol–gel method. XRD patterns confirmed the presence of a single cubic phase of pure NMFO and a single tetragonal phase of BTO. The crystallite size of BTO is found to be larger than that of NMFO. Moreover, the strain of the BTO phase increased, while the porosity decreased with increasing x-content. A high-resolution transmission electron microscope (HRTEM) revealed the formation of a single particle domain in the ferrite (NMFO) phase. Field emission scanning electron microscope (FESEM) demonstrated that the grain size increases with increasing x-content. The temperature dependence of D.C electrical resistivity showed a semiconducting behavior of all samples, while the resistivity decreased with increasing x-content. Electrical permittivity (ε') and dielectric loss (tan δ) at low (20–105 Hz) and high (1 MHz–3 GHz) frequencies at room temperature were considered. A resonance phenomenon is observed only in the high-frequency range such that the resonant frequency shifts to a higher frequency with increasing x-content. The ferroelectric hysteresis loops (P-E) revealed that the maximum polarization (Pmax) decreased with increasing x-content. The ferromagnetic hysteresis loops (M-H), carried out using a vibrating sample magnetometer (VSM), confirmed an increase in saturation magnetization (Ms) with increasing x-content. Relative magnetic permeability (µr) as a function of temperature indicated a cooperative phenomenon between ferroelectric and ferromagnetic phases at (380–480) °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Ahmed, S.F. Mansour, M. Afifi, Structural, electric and magnetoelectric properties of Ni0.85Cu0.15Fe2O4/BiFe0.7Mn0.3O3 multiferroic nanocomposites. J. Alloy. Compd. 578, 303–308 (2013)

    Article  Google Scholar 

  2. J. Zhai, Z. Xing, S. Dong, J. Li, D. Viehland, An overview: magnetoelectric laminate composites. J. Am. Ceram. Soc. 91(2), 351–358 (2008)

    Article  Google Scholar 

  3. M.I. Ce-Wen Nan, S.D. Bichurin, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: Historical perspective, status, andfuture directions. J. Appl. Phys. 103, 031101 (2008)

    Article  ADS  Google Scholar 

  4. D. Ghanbari, M. Salavati-Niasari, Synthesis of urchin-like CdS-Fe3O4 nanocomposite and its application in flame retardancy of magnetic cellulose acetate. J. Ind. Eng. Chem. 24, 284–292 (2015)

    Article  Google Scholar 

  5. M. Salavati-Niasari, Z. Fereshteh, F. Davar, Synthesis of oleylamine capped copper nanocrystals via thermal reductionof a new precursor. Polyhedron 28, 126–130 (2009)

    Article  Google Scholar 

  6. T. Gholami, M. Salavati-Niasari, S. Varshoy, Investigation of the electrochemical hydrogen storage and photocatalytic properties of CoAl2O4pigment: Green synthesis and characterization. Int. J. Hydrogen Energy 41(22), 9418–9426 (2016)

    Article  Google Scholar 

  7. S. Mortazavi-Derazkola, M. Salavati-Niasari, O. Amiri, A. Abbasi, Fabrication and characterization of Fe3O4@SiO2@TiO2@Ho nanostructures as a novel and highly efficient photocatalyst for degradation of organic pollution. J. Energy Chem. 26(1), 17–23 (2017)

    Article  Google Scholar 

  8. A. Abbasi, D. Ghanbari, M. Salavati-Niasari, M. Hamadanian, Photo-degradation of methylene blue: photocatalyst and magneticinvestigation of Fe2O3–TiO2 nanoparticles and nanocomposites. J. Mater Sci. Mater. Electron. 27, 4800–4809 (2016)

    Article  Google Scholar 

  9. F. Ansari, A. Sobhani, M. Salavati-Niasari, Simple sol-gel synthesis and characterization of new CoTiO3/CoFe2O4 nanocomposite by using liquid glucose, maltose and starch as fuel, capping andreducing agents. J. Colloid Interface Sci. 514, 723–732 (2018)

    Article  ADS  Google Scholar 

  10. F. Tavakoli, M. Salavati-Niasari, Alireza badiei, Fatemeh Mohandes, Green synthesis and characterization of graphene nanosheets. Mater. Res. Bull. 63, 51–57 (2015)

    Article  Google Scholar 

  11. M. Yousefi, F. Gholamian, D. Ghanbari, M. Salavati-Niasari, Polymeric nanocomposite materials: Preparation and characterization of star-shaped PbS nanocrystals and their influence on the thermal stability of acrylonitrile–butadiene–styrene (ABS) copolymer. Polyhedron 30, 1055–1060 (2011)

    Article  Google Scholar 

  12. B. Ertuğ, The Overview of the Electrical Properties of Barium Titanate. Am. J. Eng. Res. (AJER). 2(8), 01–07 (2013)

    Google Scholar 

  13. H.S. Singh, Neha Sangwa, Structural and Magnetic Properties of Nickel Ferrite Nanoparticles Synthesized by Ball Milling. Int. J. Eng. Sci. Inven. 6(10), 36–39 (2017)

    Google Scholar 

  14. J. Ronald, Willey, patrick noirclerc, and Guido Busca, preparation and characterization of magnesium chromite and magnesium ferrite aerogels. Chem. Eng. Commun. 123, 1–16 (1993)

    Article  Google Scholar 

  15. Y. Qing, L. Ma, Hu. Xiaochen, Fa. Luo, W. Zhou, NiFe2O4 nanoparticles filled BaTiO3 ceramics for high-performance electromagnetic interference shielding applications. Ceram. Int. 44(7), 8706–8709 (2018)

    Article  Google Scholar 

  16. M.M. Vijatović Petrović, R. Grigalaitis, A. Dzunuzovic, J.D. Bobić, B.D. Stojanović, R. Šalaševičius, J. Banys, Positive influence of Sb doping on properties of di phase multiferroics based on barium titanate and nickel ferrite. J. Alloy. Compd. 749, 1043–1053 (2018)

    Article  Google Scholar 

  17. R. Grigalaitis, M.M. Vijatović Petrović, J.D. Bobić, A. Dzunuzovic, R. Sobiestianskas, A. Brilingas, B.D. Stojanović, J. Banys, Dielectric and magnetic properties of BaTiO3 –NiFe2O4 multiferroic composites. Ceram. Int. 40, 6165–6170 (2014)

    Article  Google Scholar 

  18. X. Luo, H. Wang, R. Gao, X. Li, J. Zhang, H. Ban, Effects of molar ratio on dielectric, ferroelectric and magnetic properties of Ni0.5Zn0.5Fe2O4-BaTiO3 composite ceramics. Process. Appl. Ceram. 14(2), 91–101 (2020)

    Article  Google Scholar 

  19. J.-P. Zhou, Li. Lv, Q. Liu, Y.-X. Zhang, P. Liu, Hydrothermal synthesis and properties of NiFe2O4 @ BaTiO3 composites with well-matched interface. Sci. Technol. Adv. Mater. 13, 045001 (2012)

    Article  Google Scholar 

  20. R. Köferstein, T. Walther, D. Hesse, S.G. Ebbinghaus, Fine-grained BaTiO3–MgFe2O4 composites prepared by a Pechini-like process. J. Alloy. Compd. 638, 141–147 (2015)

    Article  Google Scholar 

  21. S.Y. Tan, S.R. Shannigrahi, S.H. Tan, F.E.H. Tay, Synthesis and characterization of composite MgFe2O4 – BaTiO3 multiferroic system. J. Appl. Phys. 103, 094105 (2008)

    Article  ADS  Google Scholar 

  22. M. F. A. Zolkepli and Z. Zainuddin, Structure, magnetic and complex impedance analysis of (1-x) BaTiO3 - (x) MgFe2O4 Composite. American Institute of Physics, Conference Proceedings. 1678, 040014 (2015).

  23. Mohamad Fahmi Amin Bin Zolkebli and Zalita Zainuddin, Structural, magnetic and electrical properties of barium titanate and magnesium ferrite composites. Sains Malaysiana. 46(6), 967–973 (2017)

    Article  Google Scholar 

  24. R. Tadi, Y.-I. Kim, D. Sarkar, Cheol Gi Kim, Kwon-SangRyu,Magnetic and electrical properties of bulk BaTiO3 + MgFe2O4 composite. J. Magn. Magn. Mater. 323, 564–568 (2011)

    Article  ADS  Google Scholar 

  25. A.M.A. Henaish, M. Mostafa, B.I. Salem, O.M. Hemeda, Improvement of magnetic and dielectric properties of magnetoelectric BST-NCZMF nanocomposite. Phase Trans. 93(5), 470–490 (2020)

    Article  Google Scholar 

  26. L.R. Pradeep Chavan, P.B. Naik, Geeta Chavan Belavi, V.T. Muttannavar, B.K. Bammannavar, R.K. Kotnala, Temperature dependent electric properties and magnetoelectric effects in ferroelectric rich Ni0.8Mg0.2Fe2O4 + BaZr02Ti08O3 magnetoelectric composites. J. Alloy. Compd. 777(10), 1258–1264 (2019)

    Article  Google Scholar 

  27. Md.D. Rahaman, S.K. Saha, T.N. Ahmed, D.K. Saha, A.K.M. Akther Hossain, Magnetoelectric effect of (1–x) Ba05Sr05Zr05Ti05O3 + (x) Ni0.12Mg0.18Cu0.2Zn0.5Fe2O4 composites. J. Magnet. Magnet. Mater. 371, 112–120 (2014)

    Article  ADS  Google Scholar 

  28. R. Ashiri, M. Ali Nemati, S. Sasani Ghamsari, M. Aalipour. Sanjabi, A modified method for barium titanate nanoparticles synthesis. Mater. Res. Bull. 46, 2291–2295 (2011)

    Article  Google Scholar 

  29. Abdul Samee Fawzi, A.D. Sheikh, V.L. Mathe, Dielectric, electrical and magnetoelectric characterization of (x) Ni0.8Zn0.2Fe2O4 + (1–x) Pb0.93La0.07(Zr0.60Ti0.40)O3 composites. Mater. Res. Bull. 45, 1000–1007 (2010)

    Article  Google Scholar 

  30. Khalid Mujasam Batoo, M.S. Abd El-sadek, Electrical and magnetic transport properties of Ni–Cu–Mg ferrite nanoparticles prepared by sol–gel method. J. Alloy. Compd 566, 112–119 (2013)

    Article  Google Scholar 

  31. S.A. Lokare, D.R. Patil, B.K. Chougule, Structural, dielectric and magnetoelectric effect in (x) BaTiO3 + (1–x) Ni0.93Co0.02Mn0.05Fe2O4 ME composites. J. Alloy. Compd. 453, 58–63 (2008)

    Article  Google Scholar 

  32. S. Abdul Khader, T. Sankarappa, Dielectric, magnetic and ferroelectric studies in (x) Mn0.5Zn0.5Fe2O4 + (1–x) BaTiO3 magnetoelectric nano-composites. Mater. Today 3, 2358–2365 (2016)

    Google Scholar 

  33. Ebtesam E. Ateia, Asmaa A. H. El-Bassuony, Galila Abdellatif, Amira T. Mohamed, The impact of ni substitution on the structural and magnetic properties of Mg Nano-ferrite. Silicon 10, 1687–1696 (2018)

    Article  Google Scholar 

  34. H. Irfan, K. Mohamed Racik, S. Anand, X-ray peak profile analysis of CoAl2O4 nanoparticles by Williamson-Hall and size-strain plot methods. Mod. Electron. Mater. 4(1), 31–40 (2018)

    Article  Google Scholar 

  35. L.S. Ashwini, Y.F. Nadaf and S.S. Bellad, Structural and dc electrical properties of LiMgFe2O4:BaTiO3 ME composites. Int. J. Adv. Sci. Techn. Res. 3(6), (2016).

  36. R.S. Totagi, N.J. Choudhari, S.S. Kakati, C.S. Hiremath, S.B. Koujalagi, R.B. Pujar, Electrical properties of Ni-Mg-Cu nanoferrites synthesized by sucrose precursor technique. Der Pharma Chemica 7(3), 11–15 (2015)

    Google Scholar 

  37. R.C. Kambale, P.A. Shaikh, C.H. Bhosale, K.Y. Rajpure, Y.D. Kolekar, Studies on magnetic, dielectric and magnetoelectric behavior of (x) NiFe1.9Mn0.1O4 and (1- x) BaZr0.08Ti0.92O3 magnetoelectric composites. J. Alloy. Compd. 489, 310-315 (2010).

  38. K. Ramarao, B. Rajesh Babu, B. Kishore Babu, V. Veeraiah, K. Rajasekhar, B. Ranjith Kumar, B. Swarana Latha, Enhancement in magnetic and electrical properties of Ni substituted Mg ferrite. Mater. Sci. Poland. 36(4), 644-654 (2018).

  39. P.B. Belavi, G.N. Chavan, L.R. Naik, V.L. Mathe, R.K. Kotnala, Resistivity and grain size dependent magnetoelectric Effect in (Y) Ni0.85Cd0.1Cu0.05Fe2O4 + (1-Y) BaTiO3 ME composites. Int. J. Sci. Technol. Res. 2(12), 298-306(2013).

  40. K.W. Wagner, The distribution of relaxation times in typical dielectrics. Ann. Phys. 40, 817–819 (1973)

    Google Scholar 

  41. C. G Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83 (1), (1951).

  42. M. Raghasudha, D. Ravinder, P. Veerasomaiah, Influence of Cr3+ ion on the dielectric properties of nano crystalline Mg-ferrites synthesized by citrate-gel method. Mater. Sci. Appl. 4, 432–438 (2013)

    Google Scholar 

  43. Yang Bai, Yu. Ji Zhou, Bo Li. Sun, Zhenxing Yue, Zhilun Gui, Longtu Li, Effect of electromagnetic environment on the dielectric resonance in the ferroelectric - ferromagnetic composite. Appl. Phys. Lett. 89, 112907 (2006)

    Article  ADS  Google Scholar 

  44. Pei Peng, Ya-Ya Hu, Yong Liu, Shi chen, Jing Shi, Rui Xiong, Yue Zhang, Magnetoelectric effect of CoFe2O4/Pb(Zr,Ti)O3 composite ceramics sintered via spark plasma sintering technology. Ceram. Int. 41(5) part A, 6676-6682 (2015).

  45. N. Shara Sowmya, A. Srinivas, K. Venu Gopal Reddy, J. Paul Praveen, Dibakar Das, S. Dinesh Kumar, V. Subramanian, S. V. Kamat, Magnetoelectric coupling studies on (x) (0.5BZT- 0.5BCT) – (100-x) NiFe2O4 [x = 90-70 wt%] particulate composite. Ceram. Int. 43, 2523-2528 (2017).

  46. Sagar Mane, Pravin Tirmali, Snehal Kadam, Arjun Tarale, Chandrakant Kolekar and Shrinivas Kulkarni, Dielectric, magnetic, and magnetodielectric properties of x [Co0.9Ni0.1Fe2O4] - (1-x) [0.5(Ba0.7Ca0.3)TiO3) - 0.5Ba(Zr0.2Ti0.8)O3] multiferroic composites. J. Chin. Adv. Mater. Soc. 4(4), 269-284 (2016).

  47. G. Nabiyouni, M. Jafari Fesharaki, M. Mozafari, J. Amighian, Characterization and magnetic properties of nickel ferrite nanoparticles prepared by ball milling technique. Chin. Phys. Lett. 27(12), 126401 (2010)

    Article  ADS  Google Scholar 

  48. R. Paulsingh, C. Venkataraju, Effect of calcinations on the structural and magnetic properties of magnesium ferrite nanoparticles prepared by sol gelmethod. Chin. J. Phys.. 56(5), 2218–2225 (2018)

    Article  Google Scholar 

  49. B.K. Bammannavar, G.N. Chavan, L.R. Naik, B.K. Chougule, Magnetic properties and magnetoelectric (ME) effect in ferroelectric rich Ni0.2Co0.8 Fe2O4 + PbZr0.8Ti0.2O3 ME composites. Mater. Chem. Phys. 117, 46-50 (2009).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. ElGendy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ElGendy, L.I., Ghani, A.A., Darwish, A.S. et al. Synthesis, microstructure analysis, electrical and magnetic properties of Ni0.5Mg0.5Fe2O4 – BaTiO3 Nano-composites. Appl. Phys. A 127, 239 (2021). https://doi.org/10.1007/s00339-021-04384-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04384-1

Keywords

Navigation