Skip to main content
Log in

Effect of melt-spinning speed on the microstructure and magnetic properties of Al–Cu–Fe alloy-doped SmCo5 ribbons

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Multielement alloy doping is the feature of this paper, and disclosing the relationship between non-equilibrium microstructure and magnetic properties after rapid cooling is the key point. 3 wt% eutectic Al82.8Cu17Fe0.2 alloy was doped into SmCo5 alloy, followed by melt-spinning at 10–40 m/s. It is found all ribbons are composed of Sm(Co, M)5 and Sm2(Co, M)7 phases, but non-equilibrium solidification at different cooling rates results in different distribution characteristics of phases and magnetic properties of the ribbons. The 10 m/s ribbons are composed of Sm–Cu- and Co-rich Sm(Co, M)5 phases and then the lamellate Sm2(Co, M)7 coexists with CeCo5-type Sm(Co, M)5 grains in the 25 m/s ribbons, while the 40 m/s ribbons form a cellular microstructure with Sm2(Co, M)7 grain boundaries and Sm(Co, M)5 intracellular grains. Correspondingly, the coercivity, remanence, and maximum magnetization of 40 m/s ribbons are 74.3%, 64.3%, and 53.2% higher than those of 10 m/s ribbons. At the same time, the coercivity mechanism and microstructure evolution are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data included in this paper are available upon request by contact with the contact corresponding author.

References

  1. N. Poudyal, J. Mohapatra, M. Xing, C. Kim, J.P. Liu, High-temperature magnetic properties of exchange-coupled Sm-Co/Nd-Fe-B hybrid nanocomposite magnets. IEEE Magn. Lett. 9, 1–4 (2018). https://doi.org/10.1109/LMAG.2017.2788892

    Article  Google Scholar 

  2. X. Song, N. Lu, M. Seyring, M. Rettenmayr, W. Xu, Z. Zhang, J. Zhang, Abnormal crystal structure stability of nanocrystalline Sm2Co17 permanent magnet. Appl. Phys. Lett. 94, 023102 (2009). https://doi.org/10.1063/1.3040316

    Article  ADS  Google Scholar 

  3. R. Gopalan, K. Suresh, A.K. Singh, V. Chandrasekaran, Metallurgical and magnetic characterisation of mechanically milled Sm(Co0.9−xFexCu0.1)4.8 alloys. Scripta Mater. 48, 1555–1559 (2003). https://doi.org/10.1016/S1359-6462(03)00105-2

    Article  Google Scholar 

  4. M. Palit, D.M. Rajkumar, S. Pandian, S.V. Kamat, Effect of grain size on microstructure and magnetic properties of Sm2(Co, Cu, Fe, Zr)17 permanent magnets. Mater. Chem. Phys. 179, 214–222 (2016). https://doi.org/10.1016/j.matchemphys.2016.05.033

    Article  Google Scholar 

  5. H. Mostaan, M. Rafiei, M.M. Oraei, E. Baharzadeh, The effect of microstructure on magnetic properties of TLP bonded Sm2Co17 hard magnets. Appl. Phys. A 126, 408 (2020). https://doi.org/10.1007/s00339-020-03592-5

    Article  ADS  Google Scholar 

  6. K. Suresh, V. Chandrasekaran, R. Gopalan, 52.7 kOe high coercivity in Sm(Co0.9Cu0.1)4.8 melt-spun ribbons. AIP Adv. 5, 077118 (2015). https://doi.org/10.1063/1.4926600

    Article  ADS  Google Scholar 

  7. X. Chi, Y. Li, X.H. Han, X.L. Duan, J.B. Sun, C.X. Cui, A new Sm(Co, Fe, Cu)4B/Sm2(Co, Fe, Cu)7 cell structure with the coercivity of up to 5.01 T. J. Magn. Magn. Mater. 458, 66–74 (2018). https://doi.org/10.1016/j.jmmm.2018.03.007

    Article  ADS  Google Scholar 

  8. C. Ma, Magnetic properties of exchange coupled SmCo5/FeCo composite particles synthesized by magnetic self-assembly. Chem. Phys. Lett. 696, 31–35 (2018). https://doi.org/10.1016/j.cplett.2018.02.042

    Article  ADS  Google Scholar 

  9. L. Fang, T. Zhang, H. Wang, C. Jiang, J. Liu, Effect of ball milling process on coercivity of nanocrystalline SmCo5 magnets. J. Magn. Magn. Mater. 446, 200–205 (2018). https://doi.org/10.1016/j.jmmm.2017.09.012

    Article  ADS  Google Scholar 

  10. L.Y. Li, Z. Gao, Y.C. Ge, A. Yan, W. Zhang, Y.D. Peng, Anisotropic nanocrystalline SmCo4.8Cr0.12C0.08 permanent magnets fabricated using melt-spinning method. J. Alloys Compd. 714, 194–197 (2017). https://doi.org/10.1016/j.jallcom.2017.03.311

    Article  Google Scholar 

  11. A.R. Yan, W.Y. Zhang, H.W. Zhang, B.G. Shen, Magnetic properties of Sm- and Cu-doped oriented SmCo5 ribbons prepared by melt spinning. J. Appl. Phys. 88, 2787–2790 (2000). https://doi.org/10.1063/1.1286245

    Article  ADS  Google Scholar 

  12. X.H. Han, J.B. Sun, H.W. Wang, Z.X. Dong, Y. Zhang, C.X. Cui, Excellent magnetic properties determined by spinodal decomposition structure of Alnico alloy doped SmCo5-based ribbons. J. Alloys Compd. 806, 1188–1199 (2019). https://doi.org/10.1016/j.jallcom.2019.07.336

    Article  Google Scholar 

  13. A.R. Yan, W.Y. Zhang, H.W. Zhang, B.G. Shen, Melt-spun magnetically anisotropic SmCo5 ribbons with high permanent performance. J. Magn. Magn. Mater. 210, L10–L14 (2000). https://doi.org/10.1016/S0304-8853(99)00614-9

    Article  ADS  Google Scholar 

  14. K. Suresh, R. Gopalan, A.K. Singh, G. Bhikshamaiah, V. Chandrasekaran, K. Hono, Coercivity of Sm(Co0.9Cu0.1)4.8 melt-spun ribbons. J. Alloys Compd. 436, 358–363 (2007). https://doi.org/10.1016/j.jallcom.2006.07.052

    Article  Google Scholar 

  15. K. Suresh, R. Gopalan, G. Bhikshamaiah, A.K. Singh, D.V. Sridhara Rao, K. Muraleedharan, V. Chandrasekaran, Phase formation, microstructure and magnetic properties investigation in Cu and Fe substituted SmCo5 melt-spun ribbons. J. Alloys Compd. 463, 73–77 (2008). https://doi.org/10.1016/j.jallcom.2007.09.062

    Article  Google Scholar 

  16. R.G.J.C. Tellez-Blanco, R. Sato Turtell, Structure and magnetic properties of SmCo5−xCux alloys. J. Alloys Compd. 281, 1–5 (1998). https://doi.org/10.1016/S0925-8388(98)00760-9

    Article  Google Scholar 

  17. C.C. Hsieh, C.W. Shih, Z. Liu, W.C. Chang, H.W. Chang, A.C. Sun, C.C. Shaw, Magnetic properties and crystal structure of melt-spun Sm(Co, M)7 (M = Al and Si) ribbons. J. Appl. Phys. 111, 07E306 (2012). https://doi.org/10.1063/1.3671429

    Article  Google Scholar 

  18. N.H.D. Saito Tetsuji, Magnetic properties of SmCo5−xFex (x=0–4) melt-spun ribbon. J. Alloys Compd. 585, 423–427 (2014). https://doi.org/10.1016/j.jallcom.2013.09.183

    Article  Google Scholar 

  19. Z.X. Dong, S. Wang, S.Y. Chen, Y.F. Cao, Z.H. Ge, J.B. Sun, Effect of Al82.8Cu17Fe0.2 alloy doping on structure and magnetic properties of SmCo5-based ribbons. J. Rare Earths (2020). https://doi.org/10.1016/j.jre.2020.10.008

    Article  Google Scholar 

  20. R. Jenkins, S. Robert, Quantitative Analysis, in Introduction to X-ray Powder Diffractometry. ed. by R. Jenkins, R.L. Snyder (Wiley, Hoboken, 1996), pp. 355–438. https://doi.org/10.1002/9781118520994.ch13

    Chapter  Google Scholar 

  21. A.I. Ulyanov, A.V. Deryagin, Temperature dependence of coercivity for powdered intermetallic compounds of RCo5 and R2Co17. Phys. Status Solidi (a) 25, 413–418 (1974). https://doi.org/10.1002/pssa.2210250206

    Article  ADS  Google Scholar 

  22. Z. Jianhua, Y. Ming, W. Yunqiao, L. Qingmei, L. Yanqin, Z. Dongtao, L. Weiqiang, Z. Jiuxing, G. Zhaohui, L. Wei, Influence of Tm on crystal structure and magnetic properties of SmCo5 compounds. Rare Metal Mater. Eng. 44, 834–837 (2015). https://doi.org/10.1016/S1875-5372(15)30058-8

    Article  Google Scholar 

  23. R. Gopalan, T. Ohkubo, K. Hono, Platelet microstructure and magnetic properties in rapidly solidified Sm20.8Co63.4Fe7.9Cu2.4Zr1.6B4 ribbons. Scripta Mater. 53, 367–371 (2005). https://doi.org/10.1016/j.scriptamat.2005.03.050

    Article  Google Scholar 

  24. J.B. Sun, Z.X. Zhang, C.X. Cui, W. Yang, P. Guo, D. Han, B.L. Wang, Effect of rapid quenching speeds on phase structure and magnetic properties of melt-spun Sm(Co, Fe, Cu, Zr)7.5 ribbons. J. Alloys Compd. 476, 575–578 (2009). https://doi.org/10.1016/j.jallcom.2008.09.052

    Article  Google Scholar 

  25. R. Friedberg, D.I. Paul, New theory of coercive force of ferromagnetic materials. Phys. Rev. Lett. 34, 1234–1237 (1975). https://doi.org/10.1103/PhysRevLett.34.1234

    Article  ADS  Google Scholar 

  26. H.R. Hilzinger, The influence of planar defects on the coercive field of hard magnetic materials. Appl. Phys. A 12, 253–260 (1977). https://doi.org/10.1007/BF00915199

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the General Program from the National Natural Science Foundation of China (NNSFC) (No. 51671078) and the Natural Science Foundation of Hebei province, China (No. E2019202035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Bing Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, LZ., Wang, S., Zhang, ZY. et al. Effect of melt-spinning speed on the microstructure and magnetic properties of Al–Cu–Fe alloy-doped SmCo5 ribbons. Appl. Phys. A 127, 202 (2021). https://doi.org/10.1007/s00339-021-04359-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04359-2

Keywords

Navigation