Skip to main content
Log in

Magnetic Properties and Microstructural Modifications of Sm-Co-Hf Alloy Ribbons by B Addition

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

Microstructure optimization is highly desirable for improving the magnetic properties of permanent magnetic materials. To optimize the microstructure and hence the magnetic properties of Hf-added Sm-Co alloys, SmCo6.8Hf0.2Bx(x = 0–0.5) ribbons were fabricated by rapid solidification method and high intrinsic coercivity and low-temperature coefficients were obtained in SmCo6.8Hf0.2B0.4 alloy ribbons. HfB2 phase formed in the alloys which acted as grain boundary pinning center for improving the intrinsic coercivity. The grain boundary pinning enhanced greatly as a result of HfB2 phase formation, the initial magnetic susceptibility decreased, and an enhanced impediment effect is observed during magnetization process. SmCo6.8Hf0.2B0.4 alloy ribbons depicted best magnetic properties of intrinsic coercivity, Hcj = 1630 kA/m and remanence, Jr = 0.52 T. The temperature coefficient of coercivity, β =  − 0.16%/°C was obtained in the temperature range of 27–400 °C, while an intrinsic coercivity of 497 kA/m at 500 °C showed the high-temperature stability of these alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Sagawa, M., Fujimura, S., Togawa, N., et al.: New material for permanent magnets on a base of Nd and Fe. J. Appl. Phys. 55(6), 2083–2087 (1984)

    Article  ADS  Google Scholar 

  2. Ding, G., Guo, S., Chen, L., et al.: Effects of the grain size on domain structure and thermal stability of sintered Nd-Fe-B magnets. J. Alloy. Compd. 735, 1176–1180 (2018)

    Article  Google Scholar 

  3. Tang, X., Sepehri-Amin, H., Matsumoto, M., et al.: Role of Co on the magnetic properties of Ce-substituted Nd-Fe-B hot-deformed magnets. Acta Mater. 175, 1–10 (2019)

    Article  ADS  Google Scholar 

  4. Ying D, Zhang TL, Xia ZC, et al.: Dispersible SmCo5 nanoparticles with huge coercivity. Nanoscale. 11(36), (2019)

  5. Bulyk II, Borukh IV.: Interaction of ground SmCo4.8Zr0.2 alloy with hydrogen. Powder Metall. Met. Cer. 56(1),1–8 (2018)

  6. Wang YQ, Yue M, Wu D, et al.: Effect of Cu redistribution in grain boundary on magnetic properties of Sm(Co0.665Fe0.25Cu0.06Zr0.025)7, permanent magnets. J. Alloys Compd. 741, (2018)

  7. Bibi, S., Wang, J.M., Rathore, M.F., et al.: Temperature stability of SmCo(2:17) magnets modified by Ni-Cr two-layer coating. Rare Met. 38(3), 1–7 (2018)

    Google Scholar 

  8. Zhang, Z.X., Song, X.Y., Xu, W.W.: Phase evolution and its effects on the magnetic performance of nanocrystalline SmCo7 alloy. Acta Mater. 59(4), 1808–1817 (2011)

    Article  ADS  Google Scholar 

  9. Song WP, Li XH, Lou L, et al.: Anisotropic bulk SmCo7 nanocrystalline magnets with high energy product. APL Mater. 5, 116101 (2017)

  10. Zhu, G.J., Lou, L., Song, W.P., et al.: Development of crystallography texture in SmCo7/α-Fe nanocomposite magnets prepared by high-pressure thermal compression. J. Alloy. Compd. 750, 414–419 (2018)

    Article  Google Scholar 

  11. Huang, G.W., Li, X.H., Lou, L., et al.: Engineering bulk, layered, multicomponent nanostructures with high energy density. Small 1800619, 1–10 (2018)

    Google Scholar 

  12. Luo, J., Liang, J.K., Guo, Y.Q., et al.: Effects of the doping element on crystal structure and magnetic properties of Sm(Co, M)7 compounds (M=Si, Cu, Ti, Zr, and Hf). Intermetallics 13(7), 710–716 (2005)

    Article  Google Scholar 

  13. Guo ZH, Chang HW, Chang CW, et al.: Magnetic properties, phase evolution, and structure of melt spun SmCo7-xNbx (x = 0~0.6) ribbons. J. Appl. Phys. 105(7), 07A731–3 (2009)

  14. Chang, H.W., Huang, S.T., Chang, C.W., et al.: Comparison on the magnetic properties and phase evolution of melt-spun SmCo7 ribbons with Zr and Hf substitution. Scripta Mater. 56(12), 1099–1102 (2007)

    Article  Google Scholar 

  15. Yao Z, Jiang CB.: Structure and magnetic properties of SmCoxTi0.4-1:7 ribbons. J. Magnet. Magnet. Mater. 320(6), 1073–1077 (2008)

  16. Guo ZH, Hsieh CC, Chang HW, et al.: Enhancement of coercivity for melt-spun SmCo7-xTax ribbons with Ta addition. J. Appl. Phys. 107(9), 09A7051–09A7053 (2010)

  17. Sun JB, Bu SJ, Yang W, et al.: Structure and magnetic properties of SmCo7-xGax (x =0~1.2) alloys. J. Alloy. Compd. 583, 554–559 (2014)

  18. Anoue, A.: Stabilization of metallic supercooled metallic liquid and bulk amorphous alloys. Acta mater. 48, 279–306 (2000)

    Article  ADS  Google Scholar 

  19. Chang HW, Huang ST, Chang CW, et al.: Effect of additives on the magnetic properties and microstructure of melt spun SmCo6.9Hf0.1M0.1 (M = B, C, Nb, Si, Ti) ribbons. J. Alloy. Compd. 455(1), 506–509 (2008)

  20. Sun, J.B., Han, D., Cui, C.X., et al.: Effects of Hf and CNTs on structure and magnetic properties of TbCu7-type Sm-Co magnets. Intermetallics 18(4), 1180–1184 (2010)

    Article  Google Scholar 

  21. Chang HW, Guo CS, Hsieh CC, et al.: Magnetic properties, phase evolution, and microstructure of melt spun Sm (Co,M)xCy (M=Hf and Zr; x = 5–9; y=0–0.15) ribbons. J. Appl. Phys. 107(9), 09A710–3 (2010)

  22. Sun JB, Han D, Cui CX, et al.: Effects of quenching speeds on microstructure and magnetic properties of novel SmCo6.9Hf0.1(CNTs)0.05 melt-spun ribbons. Acta Mater. 57(9), 2845–2850 (2009)

  23. Sun, J.B., Bu, S.J., Ding, H.W., et al.: The effects of CNTs and Si additions on the structure and magnetic properties of SmCo7-based alloys. J. Alloy. Compd. 563, 91–98 (2013)

    Article  Google Scholar 

  24. Chang HW, Guo CS, Hsieh CC, et al.: Magnetic properties, phase evolution, and microstructure of melt spun Sm(Co1-zZrz)xCy ( x = 5~9; y = 0~0.15; z = 0.03~0.06) ribbons. J. Magnet. Magnet. Mater. 324(6), 1006–1010 (2012)

  25. Feng DY, Liu ZW, Zheng ZG, et al.: Improving the structure, magnetic properties and thermal stability of rapidly quenched TbCu7-type SmCo6.4Si0.3Zr0.3 alloy by carbon addition. Phys. B: Condens. Matter. 446, 63–66 (2014)

  26. Aich, S., Shield, J.E.: Effect of Nb and C additives on the microstructures and magnetic properties of rapidly solidified Sm-Co alloys. J. Alloy. Compd. 425, 416–423 (2006)

    Article  Google Scholar 

  27. Li LY, Yan A, Yi JH, et al.: Phase transformation, grain refinement and magnetic properties in melt-spun SmCo7−x(Cr3C2) x (x = 0~0.25) ribbons. J. Alloy. Compd. 479(1), 78–81 (2009)

  28. Rehman, S.U., Jiang, Q.Z., Lie, W.K., et al.: Improved microstructure and magnetic properties of Alnico 8 alloys by B-doping. IEEE Trans. Magn. 54(7), 1–6 (2018)

    Article  Google Scholar 

  29. Rehman, S.U., Jiang, Q.Z., Ge, Q., et al.: Microstructure and magnetic properties of Alnico permanent magnetic alloys with Zr-B additives. J. Magn. Magn. Mater. 451, 243–247 (2018)

    Article  ADS  Google Scholar 

  30. Tao L, Zhong M, Rehman SU, et al.: Structures and magnetic properties of the Co7Hf melt-spun ribbons. Phys. B: Condens. Matter. 601, 412610 (2021)

  31. Yang M, Luo S, Rehman SU, et al.: Effect of lattice distortion induced by Ce chemical valence on coercivity of Nd-Ce-Fe-B alloy. J. Alloy. Compd. 894, 162486 (2022)

  32. Shield, J.E., Ravindran, V.K., Aich, S., et al.: Rapidly solidified nanocomposite SmCo7/fcc Co permanent magnets. Scr. Mater 52(1), 75–78 (2005)

    Article  Google Scholar 

  33. Hadjipanayis GC, Kim A.: Domain wall pinning versus nucleation of reversed domains in R‐Fe‐B magnets. J. Appl. Phys. 63(8), 3310–3315.32 (1988)

  34. Wang L, Quan Q, Zhang L, et al.: Microstructures, magnetic properties and coercivity mechanisms of Nd-Ce-Fe-B based alloys by Zr substitution. J. Appl. Phys. 123(11), 113904 (2018)

  35. Livingston, J.D.: Present understanding of coercivity in cobalt-rare earths. AIP Conf. Proc. Am. Inst. Phys. 10(1), 643–657 (1973)

    Article  ADS  Google Scholar 

  36. Buschow, K.H.J.: New developments in hard magnetic materials. Rep. Prog. Phys. 54(9), 1123 (1991)

    Article  ADS  Google Scholar 

  37. Kramer, M.J., McCallum, R.W., Anderson, I.A., et al.: Prospects for non-rare earth permanent magnets for traction motors and generators. Jom 64(7), 752–763 (2012)

    Article  Google Scholar 

  38. Cui Z, Wang X, Ding Y, et al.: Adsorption of CO, NH3, NO, and NO2 on pristine and defective g-GaN: Improved gas sensing and functionalization. Appl. Surf. Sci. 530, 147275 (2020)

Download references

Funding

This work was supported by R&D and Industrialization Key Technology of Sintered NdFeB Magnet Made of Ion Type Mixed Rare Earth, Jiangxi Province Main Discipline Academic and Technical Leader Training Program Youth Project (Grant number: 20204 BCJ23029), Postdoctoral Research Project of Jiangxi Province, China (Grant No. 2017KY12), and by Jiangxi University of Science and Technology under PhD Start-up fund (Grant number. NX202020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minglong Zhong or Sajjad Ur Rehman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, M., Xie, W. & Rehman, S.U. Magnetic Properties and Microstructural Modifications of Sm-Co-Hf Alloy Ribbons by B Addition. J Supercond Nov Magn 35, 1329–1335 (2022). https://doi.org/10.1007/s10948-022-06186-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-022-06186-9

Keywords

Navigation