Skip to main content
Log in

Efficiency improvement of perovskite solar cell by modifying structural parameters and using Ag nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Despite a significant growth in their efficiency in the last decade, perovskite solar cells suffer from low absorption power in the infrared range which forms a wide range of the solar spectrum. To find solutions to improve the performance of solar panels and the efficiency of their absorption, this research examined the effects of using nanostructures and plasmonic nanoparticles for modification of perovskite solar cells' active layer to create a wider absorption spectrum. For this purpose, the effects of different factors, such as the composition, radius and location of plasmonic nanoparticles on light absorption, open-circuit voltage, short-circuit current density and power conversion efficiency (PCE), were considered. Silver spherical nanoparticles were selected to be placed in the absorbent layer because of their low loss and high absorption power. By selection of optimum size, radius and position of nanoparticles and the location of metallic nanoparticles inside the transporting layers of the carrier, an improvement in the absorption and a 43% increase in the PCE of the perovskite solar cell were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.A. Green, A. Ho-Baillie, H.J. Snaith, The emergence of perovskite solar cells. Nat. Photonics 8(7), 506 (2014)

    Article  ADS  Google Scholar 

  2. H.J. Snaith, Perovskites: The emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4(21), 3623–3630 (2013)

    Article  Google Scholar 

  3. E. Ghahremanirad, A. Bou, S. Olyaee, J. Bisquert, Inductive loop in the impedance response of perovskite solar cells explained by surface polarization model. J. Phys. Chem. Lett. 8(7), 1402–1406 (2017)

    Article  Google Scholar 

  4. E. Ghahremanirad, S. Olyaee, M. Hedayati, The influence of embedded plasmonic nanostructures on optical absorption of perovskite solar cells. Photonics, 6. AN. 37, 1–8 (2019)

    Google Scholar 

  5. E. Ghahremanirad, S. Olyaee, A. Abdollahi Nejand, P. Nazari, V. Ahmadi, K. Abedi, Improving the performance of perovskite solar cells using kesterite mesostructure and plasmonic network. Sol. Energy 169, 498–504 (2018)

    Article  ADS  Google Scholar 

  6. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009)

    Article  Google Scholar 

  7. "NREL efficiency chart", https://www.nrel.gov/pv/cell-efficiency.html, 2020.

  8. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka. Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2). In Proc. 210th ECS Meeting (pp. 1) (2006)

  9. J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, N.G. Park, Efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10), 4088–4093 (2011)

    Article  ADS  Google Scholar 

  10. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643–647 (2012)

    Article  ADS  Google Scholar 

  11. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, H.J. Snaith, Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341–344 (2013)

    Article  ADS  Google Scholar 

  12. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013)

    Article  ADS  Google Scholar 

  13. Y. Yuan, Z. Xiao, B. Yang, J. Huang, Arising applications of ferroelectric materials in photovoltaic devices. J. Mater. Chem. A 2(17), 6027–6041 (2014)

    Article  Google Scholar 

  14. J.M. Frost, K.T. Butler, F. Brivio, C.H. Hendon, M. Van Schilfgaarde, A. Walsh, Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14(5), 2584–2590 (2014)

    Article  ADS  Google Scholar 

  15. M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena, M.K. Nazeeruddin, M. Grätzel, Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9(6), 1989–1997 (2016)

    Article  Google Scholar 

  16. W.S. Yang, B.W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim, D.U. Lee, S.I. Seok, Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356(6345), 1376–1379 (2017)

    Article  ADS  Google Scholar 

  17. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, J. You, Surface passivation of perovskite film for efficient solar cells. Nat. Photonics 13(7), 460–466 (2019)

    Article  ADS  Google Scholar 

  18. M. Kim, G.H. Kim, T.K. Lee, I.W. Choi, H.W. Choi, Y. Jo, H. Lee, Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells. Joule 3(9), 2179–2192 (2019)

    Article  Google Scholar 

  19. S.K. Cushing, N. Wu, Plasmon-enhanced solar energy harvesting. Electrochem. Soc. Interface 22(2), 63 (2013)

    Article  ADS  Google Scholar 

  20. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9(3), 193–204 (2010)

    Article  ADS  Google Scholar 

  21. A. Dabirian, N. Taghavinia, Theoretical study of light trapping in nanostructured thin film solar cells using wavelength-scale silver particles. ACS Appl. Mater. Interfaces 7(27), 14926–14932 (2015)

    Article  Google Scholar 

  22. V. Dusastre, Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (World Scientific, London, 2011).

    Google Scholar 

  23. H.S. Kim, J.W. Lee, N. Yantara, P.P. Boix, S.A. Kulkarni, S. Mhaisalkar, M. Grätzel, N.G. Park, High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 13(6), 2412–2417 (2013)

    Article  ADS  Google Scholar 

  24. D. Liu, T.L. Kelly, Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8(2), 133 (2014)

    Article  ADS  Google Scholar 

  25. Y. Xu, Y. Wang, J. Yu, B. Feng, H. Zhou, J. Zhang, J. Duan, X. Fan, P.A. van Aken, P.D. Lund, H. Wang, Performance improvement of perovskite solar cells based on pcbm-modified ZnO-nanorod arrays. IEEE J. Photovolt. 6(6), 1530–1536 (2016)

    Article  Google Scholar 

  26. K.C. Wang, J.Y. Jeng, P.S. Shen, Y.C. Chang, E.W.G. Diau, C.H. Tsai, T.Y. Chao, H.C. Hsu, P.Y. Lin, P. Chen, T.F. Guo, P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci. Rep. 4, 4756 (2014)

    Article  Google Scholar 

  27. P. Ocampo, J.M. Ball, M. Darwich, G.E. Eperon, H.J. Snaith, Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates. Nat. Commun. 4, 2761 (2013)

    Article  ADS  Google Scholar 

  28. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Grätzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316 (2013)

    Article  ADS  Google Scholar 

  29. M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395 (2013)

    Article  ADS  Google Scholar 

  30. J.A. Christians, R.C. Fung, P.V. Kamat, An inorganic hole conductor for organo-lead halide perovskite solar cells Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136(2), 758–764 (2013)

    Article  Google Scholar 

  31. P. Qin, S. Tanaka, S. Ito, N. Tetreault, K. Manabe, H. Nishino, M.K. Nazeeruddin, M. Grätzel, Inorganic hole conductor-based lead halide perovskite solar cells with 24% conversion efficiency. Nat. Commun. 5, 834 (2014)

    Article  Google Scholar 

  32. B.A. Nejand, V. Ahmadi, S. Gharibzadeh, H.R. Shahverdi, Cuprous oxide as a potential low-cost hole-transport material for stable perovskite solar cells. Chemsuschem 9(3), 302–313 (2016)

    Article  Google Scholar 

  33. Y. Wang, Z. Xia, J. Liang, X. Wang, Y. Liu, C. Liu, S. Zhang, H. Zhou, Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design. Semicond. Sci. Technol. 30(5), 054004 (2015)

    Article  ADS  Google Scholar 

  34. B. Abdollahi Nejand, V. Ahmadi, H.R. Shahverdi, New physical deposition approach for low cost inorganic hole transport layer in normal architecture of durable perovskite solar cells. ACS Appl. Mater. Interfaces 7(39), 21807–21818 (2015)

    Article  Google Scholar 

  35. A. Corani, M.H. Li, P.S. Shen, P. Chen, T.F. Guo, A. El Nahhas, K. Zheng, A. Yartsev, V. Sundström, C.S. Ponseca Jr., Ultrafast dynamics of hole injection and recombination in organometal halide perovskite using nickel oxide as p-type contact electrode. J. Phys. Chem. Lett. 7(7), 1096–1101 (2016)

    Article  Google Scholar 

  36. W. Chen, Y. Wu, J. Liu, C. Qin, X. Yang, A. Islam, Y.B. Cheng, L. Han, Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells. Energy Environ. Sci. 8(2), 629–640 (2015)

    Article  Google Scholar 

  37. X. Xu, Z. Liu, Z. Zuo, M. Zhang, Z. Zhao, Y. Shen, H. Zhou, Q. Chen, Y. Yang, M. Wang, Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett. 15(4), 2402–2408 (2015)

    Article  ADS  Google Scholar 

  38. W.C. Lai, K.W. Lin, T.F. Guo, J. Lee, Perovskite-based solar cells with nickel-oxidized nickel oxide hole transfer layer. IEEE Trans. Electron Devices 62(5), 1590–1595 (2015)

    Article  ADS  Google Scholar 

  39. S. Ludwigs, P3HT Revisited-From Molecular Scale to Solar Cell Devices (Vol. 265) (Springer, Berlin, 2014).

    Book  Google Scholar 

  40. H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss, A.J.H. Spiering, R.A. Janssen, E.W. Meijer, P. Herwig, D.M. De Leeuw, Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401(6754), 685 (1999)

    Article  ADS  Google Scholar 

  41. Y. Kim, S. Cook, S.M. Tuladhar, S.A. Choulis, J. Nelson, J. R. Durrant, D.D. Bradley, M. Giles, I. McCulloch, C.S. Ha, M. Ree, A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. In Materials for Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group. (2011) pp. 63–69

  42. I.R. Chavez-Urbiola, M.I. Pintor-Monroy, F.J. Willars-Rodriguez, Y.V. Vorobiev, R. Ramírez-Bon, M.A. Quevedo-Lopéz, Effects of aluminum doping upon properties of cadmium sulfide thin films and its effect on ITO/CdS: Al/NiOx/Ni/Au diodes. J. Appl. Phys. 126(11), 115702 (2019)

    Article  ADS  Google Scholar 

  43. Y. Wang, Z. Xia, J. Liang, X. Wang, Y. Liu, C. Liu, H. Zhou, Towards printed perovskite solar cells with cuprous oxide hole transporting layers: a theoretical design. Semicond. Sci. Technol. 30(5), 054004 (2015)

    Article  ADS  Google Scholar 

  44. S. Bansal, P. Aryal. Evaluation of new materials for electron and hole transport layers in perovskite-based solar cells through SCAPS-1D simulations. In 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC) (pp. 0747–0750) IEEE (2016, June) ‏

  45. M. Hedayati, S. Olyaee, S.M.B. Ghorashi, The effect of adsorbent layer thickness and gallium concentration on the efficiency of a dual-junction copper indium gallium diselenide solar cell. J. Electron. Mater. 49(2), 1454–1461 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research has been done in Nano-photonics and Optoelectronics Research Laboratory (NORLab), and the authors would like to thank Shahid Rajaee Teacher Training University for supporting this research project.

Funding

This work was supported by Shahid Rajaee Teacher Training University (SRTTU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Olyaee.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motavassel, S., Seifouri, M. & Olyaee, S. Efficiency improvement of perovskite solar cell by modifying structural parameters and using Ag nanoparticles. Appl. Phys. A 127, 96 (2021). https://doi.org/10.1007/s00339-021-04276-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04276-4

Keywords

Navigation