Skip to main content
Log in

Effects of alloy composition, cavity aspect ratio, and temperature of imprinted ZrCu metallic glass films: a molecular dynamics study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of alloy composition, cavity aspect ratio, and temperature on the pattern transfer mechanism and mechanics of ZrCu metallic glass (MG) films under a nanoimprinting process are studied using molecular dynamics simulations based on the many-body embedded-atom potential. The simulation results show that the glass transition temperature of ZrCu MGs increases with increasing Zr content. Imprinting at higher temperatures or with a higher cavity aspect ratio shortens filling time. Shear origin zones are more concentrated for imprinting at lower imprint temperatures or a higher cavity aspect ratio. The loading force increases with increasing cavity aspect ratio and decreasing Zr content. The springback ratio of a pattern increases with increasing cavity aspect ratio and decreasing Zr contare the film heights including and

ent. For imprinting with a high cavity aspect ratio, the pattern width has much more springback than that of the pattern height. The sharpness of patterns significantly decreases with increasing unloading temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Schift, Nanoimprint lithography: 2D or not 2D? A review. Appl. Phys. A 121, 415–435 (2015)

    Article  ADS  Google Scholar 

  2. S.Y. Chou, P.R. Kraus, P.J. Renstrom, Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 67, 3114–3116 (1995)

    Article  ADS  Google Scholar 

  3. J.J. Wierer, M.R. Krames, J.E. Epler, N.F. Gardner, M.G. Craford, J.R. Wendt, J.A. Simmons, M.M. Sigalas, InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal structures. Appl. Phys. Lett. 84, 3885–3887 (2004)

    Article  ADS  Google Scholar 

  4. J.J. Wierer, A. David, M.M. Megens, III-nitride photonic-crystal light-emitting diodes with high extraction efficiency. Nat. Photonics 3, 163–169 (2009)

    Article  ADS  Google Scholar 

  5. H. Altug, D. Englund, J. Vučković, Ultrafast photonic crystal nanocavity laser. Nat. Phys. 2, 484–488 (2006)

    Article  Google Scholar 

  6. S.A. Moore, L. O’Faolain, T.P. White, T.F. Krauss, Photonic crystal laser with mode selective mirrors. Opt. Express 16, 1365–1370 (2008)

    Article  ADS  Google Scholar 

  7. V. Malyarchuk, F. Hua, N. Mack, V. Velasquez, J. White, R. Nuzzo, J. Rogers, High performance plasmonic crystal sensor formed by soft nanoimprint lithography. Opt. Express 13, 5669–5675 (2005)

    Article  ADS  Google Scholar 

  8. J.M. McMahon, J. Henzie, T.W. Odom, G.C. Schatz, S.K. Gray, Tailoring the sensing capabilities of nanohole arrays in gold films with Rayleigh anomaly-surface plasmon polaritons. Opt. Express 15, 18119–18129 (2007)

    Article  ADS  Google Scholar 

  9. K. Soderstrom, J. Escarre, O. Cubero, F.J. Haug, S. Perregaux, C. Ballif, UV-nano-imprint lithography technique for the replication of back reflectors for n-i-p thin film silicon solar cells. Prog. Photovolt. 19, 202–210 (2011)

    Article  Google Scholar 

  10. G. Kumar, H.X. Tang, J. Schroers, Nanomoulding with amorphous metals. Nature 457, 868–872 (2009)

    Article  ADS  Google Scholar 

  11. K. Takenaka, N. Saidoh, N. Nishiyama, A. Inoue, Fabrication and nano-imprintabilities of Zr-, Pd- and Cu-based glassy alloy thin films. Nanotechnology 22, 105302-1–105302-6 (2011)

    Article  ADS  Google Scholar 

  12. J. Schroers, The superplastic forming of bulk metallic glasses. JOM 57, 35–39 (2005)

    Article  ADS  Google Scholar 

  13. N. Chen, H.A. Yang, A. Caron, P.C. Chen, Y.C. Lin, D.V. Louzguine-Luzgin, K.F. Yao, M. Esashi, A. Inoue, Glass-forming ability and thermoplastic formability of a Pd40Ni40Si4P16 glassy alloy. J. Mater. Sci. 46, 2091–2096 (2011)

    Article  ADS  Google Scholar 

  14. K.F. Yao, C.Q. Zhang, Fe-based bulk metallic glass with high plasticity. Appl. Phys. Lett. 90, 061901-1–061901-3 (2007)

    ADS  Google Scholar 

  15. W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57, 487–656 (2012)

    Article  Google Scholar 

  16. C.D. Wu, T.H. Fang, K.C. Chao, Effects of temperature and alloy composition on nanomechanical properties of ZrCu metallic glass under tension. Curr. Nanosci. 15(5), 481–485 (2019)

    Article  ADS  Google Scholar 

  17. G.J. Yang, B. Xu, L.T. Kong, J.F. Li, S. Zhao, Size effects in Cu50Zr50 metallic glass films revealed by molecular dynamics simulations. J. Alloys Compd. 688, 88–95 (2016)

    Article  Google Scholar 

  18. Y. Zhu, G. Liao, T. Shi, M. Li, Z. Tang, F. Xiong, Thermoplastic deformation and structural evolutions in nanoimprinting metallic glasses using molecular dynamics analysis. J. Non-Cryst. Solids 427, 46–53 (2015)

    Article  ADS  Google Scholar 

  19. C.D. Wu, C.J. Hou, Molecular dynamics analysis of plastic deformation and mechanics of imprinted metallic glass films. Comput. Mater. Sci. 144, 248–255 (2018)

    Article  Google Scholar 

  20. C.H. Wang, K.C. Chao, T.H. Fang, I. Stachiv, S.F. Hsieh, Investigations of the mechanical properties of nanoimprinted amorphous Ni–Zr alloys utilizing the molecular dynamics simulation. J. Alloys Compd. 659, 224–231 (2016)

    Article  Google Scholar 

  21. D.Q. Doan, T.H. Fang, A.S. Tran, T.H. Chen, High deformation capacity and dynamic shear band propagation of imprinted amorphous Cu50Zr50/crystalline Cu multilayered nanofilms. J. Phys. Chem. Solids 138, 109291-1–109291-16 (2019)

    Google Scholar 

  22. T.H. Fang, W.J. Chang, D.J. Yu, C.C. Huang, Microscopic properties of a nanocrystal aluminum thin film during nanoimprint using quasi-continuous method. Thin Solid Films 612, 237–242 (2016)

    Article  ADS  Google Scholar 

  23. A. Gaikwad, S. Desai, Understanding material deformation in nanoimprint of gold using molecular dynamics simulations. Am. J. Eng. Appl. Sci. 11(2), 837–844 (2018)

    Article  Google Scholar 

  24. F. Li, X.J. Liu, Z.P. Lu, Atomic structural evolution during glass formation of a Cu–Zr binary metallic glass. Comput. Mater. Sci. 85, 147–153 (2014)

    Article  ADS  Google Scholar 

  25. M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, D. Yagodin, P. Popel, Development of suitable interatomic potentials for simulation of liquid and amorphous Cu–Zr alloys. Philos. Mag. 89, 967–987 (2009)

    Article  ADS  Google Scholar 

  26. J.M. Haile, Molecular Dynamics Simulation: Elementary Methods (Wiley, New York, 1992)

    Google Scholar 

  27. M.I. Mendelev, D.J. Sordelet, M.J. Kramer, Using atomistic computer simulations to analyze X-ray diffraction data from metallic glasses. J. Appl. Phys. 102, 043501 (2007)

    Article  ADS  Google Scholar 

  28. L. Xie, P. Brault, A.L. Thomann, L. Bedra, Molecular dynamic simulation of binary ZrxCu100 x metallic glass thin film growth. Appl. Surf. Sci. 274, 164–170 (2013)

    Article  ADS  Google Scholar 

  29. Z.W. Zhu, H.F. Zhang, W.S. Sun, B.Z. Ding, Z.Q. Hu, Processing of bulk metallic glasses with high strength and large compressive plasticity in Cu50Zr50. Scr. Mater. 54, 1145–1149 (2006)

    Article  Google Scholar 

  30. T. Egami, Y. Waseda, Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 64, 113–134 (1984)

    Article  ADS  Google Scholar 

  31. S.D. Feng, L. Qi, G. Li, W. Zhao, R.P. Liu, Effects of preintroduced shear origin zones on mechanical property of ZrCu metallic glass. J. Non-Cryst. Solids 373–374, 1–4 (2013)

    Article  ADS  Google Scholar 

  32. Q.X. Pei, C. Lu, Z.S. Liu, K.Y. Lam, Molecular dynamics study on the nanoimprint of copper. J. Phys. D: Appl. Phys. 40, 4928–4935 (2007)

    Article  ADS  Google Scholar 

  33. J. Lee, J.Y. Kim, J.H. Cho, J.G. Ok, M.K. Kwak, Scalable fabrication of flexible microstencils by using sequentially induced dewetting phenomenon. ACS Omega 2, 1097–1103 (2017)

    Article  Google Scholar 

  34. T.H. Fang, C.I. Weng, Three-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale. Nanotechnology 11, 148–153 (2000)

    Article  ADS  Google Scholar 

  35. D.Q. Doan, T.H. Fang, A.S. Tran, T.H. Chen, Residual stress and elastic recovery of imprinted Cu–Zr metallic glass films using molecular dynamic simulation. Comput. Mater. Sci. 170, 109162-1–109162-19 (2019)

    Article  Google Scholar 

  36. C.W. Tang, Y.C. Chang, T.T. Wu, J.C. Huang, C.T. Pan, Micro-forming of Au49Ag5.5Pd2.3Cu26.9Si16.3 metallic glasses in supercooled region. Adv. Mater. Res. 47–50, 266–269 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology, Taiwan, under Grants MOST 106-2221-E-033-023 and MOST 107-2218-E-033-011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-Da Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, CD., Li, RE. Effects of alloy composition, cavity aspect ratio, and temperature of imprinted ZrCu metallic glass films: a molecular dynamics study. Appl. Phys. A 126, 209 (2020). https://doi.org/10.1007/s00339-020-3398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3398-7

Keywords

Navigation