Skip to main content
Log in

Model for estimations of laser threshold fluencies for photothermal bubble generation around nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Theoretical investigation and estimations of the laser threshold fluencies are carried out for evaporation of water and bubble generation around of solid spherical nanoparticles by laser pulses. Simple analytical model has been developed for this purpose. The temporal dependences of nanoparticle temperature and energy conservation law are used for estimations of laser threshold fluencies. The dependences of the threshold fluencies on pulse durations, laser wavelengths, and nanoparticle radii are investigated and discussed. Comparison has been given some predicted values of the laser threshold fluencies for bubble generation in water around gold spherical nanoparticle with experimental data. The use of the fitting parameter (maximal nanoparticle temperature at the end of laser action) can provide the appropriate agreement of the results of developed model with experimental data. The estimation of maximal nanoparticle temperature can provide the analysis of realized processes under laser action on nanoparticles and necessary validation of experimental data. These model and results can be used for the estimations of the threshold fluencies for photothermal bubble generation by laser pulses around nanoparticles and for applications in various laser technologies, especially in laser nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Singh, H. Zeng, C. Guo, W. Cai (eds.), Nanomaterials. Processing and Characterization with Lasers. (Wiley-VCH Verlag GmbH, Berlin, 2014)

  2. S. Wang, L. Fu, Y. Zhang, J. Wang, Z. Zhang, Quantitative evaluation and optimization of photothermal bubble generation around overheated nanoparticles excited by pulsed lasers. J. Phys. Chem. C 122, 24421–24435 (2018)

    Article  Google Scholar 

  3. A.M. Fales, W.C. Vogt, K.A. Wear, J. Pfefer, I.K. Ilev, Size-dependent thresholds for melting and nanobubble generation using pulsed-laser irradiated gold nanoparticles, in Proc. SPIE “Plasmonics in Biology and Medicine XV” 10509: No. 105090C (2018)

  4. M. Kitz, S. Preisser, A. Wetterwald, M. Jaeger, G. Thalmann, M. Frenz, Vapor bubble generation around gold nano-particles and its application to damaging of cells. Biomed. Opt. Expr. 2, 291–304 (2011)

    Article  Google Scholar 

  5. A. Siems, S. Weber, J. Boneberg, A. Plech, Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles. New J Phys 13, 043018 (2011)

    Article  Google Scholar 

  6. V. Kotaidis, A. Plech, Cavitation dynamics on the nanoscale. Appl Phys Lett 87, 213102 (2005)

    Article  ADS  Google Scholar 

  7. C. Boutopoulos, M. Fortin-Deschênes, E. Bergeron, M. Meunier, Dynamic imaging of transient bubbles generated by femtosecond irradiation of plasmonic nanoparticles in suspensions and cell environment, in Proc. of SPIE, 8972, No. 897208 (2014)

  8. R. Lachaine, E. Boulais, E. Bourbeau, M. Meunier, From thermo- to plasma-mediated ultrafast laser-induced plasmonic nanobubbles. Appl. Phys. A 112, 119–122 (2013)

    Article  ADS  Google Scholar 

  9. T. Katayama, K. Setoura, D. Werner, H. Miyasaka, S. Hashimoto, Picosecond-to-nanosecond dynamics of plasmonic nanobubbles from pump−probe spectral measurements of aqueous colloidal gold nanoparticles. Langmuir 30, 9504–9513 (2014)

    Article  Google Scholar 

  10. E. Lukianova-Hleb, A. Volkov, D. Lapotko, Laser pulse duration is critical for the generation of plasmonic nanobubbles. Langmuir 30, 7425–7434 (2014)

    Article  Google Scholar 

  11. M. Bhuyan, A. Soleilhac, M. Somayaji, T. Itina et al., High fidelity visualization of multiscale dynamics of laser induced bubbles in liquids containing gold nanoparticles. Sci. Rep. 8, 9665 (2018)

    Article  ADS  Google Scholar 

  12. V.K. Pustovalov, A.S. Smetannikov, V.P. Zharov, Photothermal and accompanied phenomena of selective nanophotothermolysis with gold nanoparticles and laser pulses. Las. Phys. Lett. 5, 775–792 (2008)

    Article  Google Scholar 

  13. J. Lombard, T. Biben, S. Merabia, Threshold for vapor nanobubble generation around plasmonic nanoparticles. J. Phys. Chem. C 121, 15402–15415 (2017)

    Article  Google Scholar 

  14. R. Lachaine, É. Boulais, D. Rioux, C. Boutopoulos, M. Meunier, Computational design of durable spherical nanoparticles with optimal material, shape, and size for ultrafast plasmon-enhanced nanocavitation. ACS Photon. 3, 2158–2169 (2016)

    Article  Google Scholar 

  15. A. Dagallier, E. Boulais, C. Boutopoulos, R. Lachaine, M. Meunier, Multiscale modeling of plasmonic enhanced energy transfer and cavitation around laser-excited nanoparticles. Nanoscale 9, 3023–3032 (2017)

    Article  Google Scholar 

  16. S. Maheshwari, M. van der Hoef, A. Prosperetti, D. Lohse, Dynamics of formation of a vapor nanobubble around a heated nanoparticle. J. Phys. Chem. C122, 20571–20580 (2018)

    Google Scholar 

  17. V.K. Pustovalov, L. Astafyeva, Nonlinear thermo-optical properties of two-layered spherical system of gold nanoparticle core and water vapor shell during initial stage of shell expansion. Nanoscale Res. Lett. 6, 448–456 (2011)

    Article  ADS  Google Scholar 

  18. A.M. Fales, W.C. Vogt, K.A. Wear, T.J. Pfefer, I.K. Ilev, Experimental investigation of parameters influencing plasmonic nanoparticle-mediated bubble generation with nanosecond laser pulses. J. Biomed. Opt. 24, 065003 (2019)

    Article  ADS  Google Scholar 

  19. L. Hou, M. Yorulmaz, N. Verhart, M. Orrit, Explosive formation and dynamics of vapor nanobubbles around a continuously heated gold nanosphere. New J. Phys. 17, 013050 (2015)

    Article  ADS  Google Scholar 

  20. T. Jollans, M. Orrit, Explosive, oscillatory, and Leidenfrost boiling at the nanoscale. Phys. Rev. E 99, 063110 (2019)

    Article  ADS  Google Scholar 

  21. K. Metwally, S. Mensah, G. Baffou, Fluence threshold for photothermal bubble generation using plasmonic nanoparticles. J. Phys. Chem. C 119, 28586–28596 (2015)

    Article  Google Scholar 

  22. M. Dietzel, D. Poulikakos, On vapor bubble formation around heated nanoparticles in liquids. Int. J. Heat Mass Transfer 50, 2246–2259 (2007)

    Article  Google Scholar 

  23. C. Bohren, D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley Interscience Publication, New York, 1983)

    Google Scholar 

  24. V.K. Pustovalov, V.A. Babenko, Optical properties of gold nanoparticles at laser radiation wavelengths for laser applications in nanotechnology and medicine. Las. Phys. Lett. 1, 516–520 (2004)

    Article  ADS  Google Scholar 

  25. V.K. Pustovalov, Light-to-heat conversion and heating of single nanoparticles, their assemblies, and surrounding medium under laser pulses. RSC Adv. 6, 81266–81289 (2016)

    Article  Google Scholar 

  26. V.P. Scripov, Metastable Liquids (Wiley, Berlin, 1974)

    Google Scholar 

  27. P.G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, 1996)

    Google Scholar 

  28. F. Kreiht, W. Black, Basic Heat Transfer (Harper and Row, New York, 1980)

    Google Scholar 

  29. A. Plech, S. Ibrahimkutty, S. Reich, G. Newby, Thermal dynamics of pulsed-laser excited gold nanorods in suspension. Nanoscale 9, 17284–17292 (2017)

    Article  Google Scholar 

  30. N. Khlebtsov, V. Bogatyrev, L. Dykman, B. Khlebtsov, S. Staroverov, A. Shirokov et al., Analytical and theranostic applications of gold nanoparticles and multifunctional nanocomposites. Theranostics 3, 167–180 (2013)

    Article  Google Scholar 

  31. L. Cavigli, F. Micheletti, P. Tortoli, S. Centi, S. Lai, C. Borri, F. Rossi, F. Ratto, R. Pini, Light and Ultrasound Activated Microbubbles around Gold Nanorods for Photoacoustic Microsurgery, in Proc. SPIE “Photons Plus Ultrasound: Imaging and Sensing” 10064: 1006457 (2017)

  32. H. Arami, C. Patel, S. Madsen, P. Dickinson, R. Davis, Y. Zeng et al., Nanomedicine for spontaneous brain tumors: a companion clinical trial. ACS Nano 13, 2858–2869 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor K. Pustovalov.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pustovalov, V.K. Model for estimations of laser threshold fluencies for photothermal bubble generation around nanoparticles. Appl. Phys. A 126, 196 (2020). https://doi.org/10.1007/s00339-020-3370-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3370-6

Keywords

Navigation