Skip to main content

Laser-Induced Bubble Generation on Excitation of Gold Nanoparticles

  • Chapter
  • First Online:
High-Energy Chemistry and Processing in Liquids
  • 690 Accesses

Abstract

This chapter focuses on pulsed-laser-induced explosive boiling of the liquid medium adjacent to gold nanoparticles that are suspended in solution. Although the laser-induced cavitation via multiphoton absorption has been known for a long time, photothermal generation of steam bubbles on irradiating the nanoparticles is by far efficient because of surface plasmon excitation. Basic properties of pulsed-laser-induced photothermal bubbles such as threshold laser fluences, bubble lifetimes and nanoparticle temperatures have been investigated experimentally. Such experiments inspired much interest from theoretical and computational studies, which accelerated thorough understanding of the fundamental processes of the temperature-induced phase transition confined to the local area surrounding the nanoparticles. Furthermore, it has been demonstrated recently that photothermal bubbles have found unprecedented applications such as promoting microscale lasing, enormously enhancing the speed of photophoretic movement for nanoparticles and sensitizing photoporation through cell membranes. We will discuss the application point of view also in this task. Finally, we will refer to underlying challenges and future prospects of the transient vapor nanobubbles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995). https://doi.org/10.1007/978-3-662-09109-8

  2. M.L. Brongersma, N.J. Halas, P. Nordlander, Plasmon-induced hot carrier science and technology. Nat. Nanotech. 10, 25−34 (2015). https://www.nature.com/articles/nnano.2014.311

  3. V. Kotaidis, A. Plech, Cavitation dynamics on the nanoscale. Appl. Phys. Lett. 87, 213102. (2005). https://doi.org/10.1063/1.2132086

  4. V. Kotaidis, C. Dahmen, G. von Plessen, F. Springer, A. Plech, Excitation of nanoscale vapor bubbles at the surface of gold nanoparticles in water. J. Chem. Phys. 124(2006). https://doi.org/10.1063/1.2187476

  5. M. Hu, H. Petrova, G.V. Hartland, Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures. Chem. Phys. Lett. 391, 220–225 (2004). https://doi.org/10.1016/j.cplett.2004.05.016

    Article  CAS  Google Scholar 

  6. A. Siems, S.A.L. Weber, J. Boneberg, A. Plech, Thermodynamics of nanosecond nanobubble formation at laser-excited metal nanoparticles. New J. Phys. 13, 043018 (2011). https://doi.org/10.1088/1367-2630/13/4/043018

  7. E. Lukianova-Hleb, L.Y. Hu, L. Latterini, L. Tarpani, S. Lee, R.A. Drezek, J.H. Hafner, D.O. Lapotko, Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano 4, 2109 (2010). https://doi.org/10.1021/nn1000222

  8. T. Katayama, K. Setoura, D. Werner, H. Miyasaka, S. Hashimoto, Picosecond-to-nanosecond dynamics of plasmonic nanobubbles from pump–probe spectral measurements of aqueous colloidal gold nanoparticles. Langmuir 30, 9504−9513 (2014) https://pubs.acs.org/doi/abs/https://doi.org/10.1021/la500663x.

  9. K. Metwally, S. Mensah, G. Baffou, Fluence threshold for photothermal bubble generation using plasmonic nanoparticles. J. Phys. Chem. C 119, 28586−28596 (2015). https://doi.org/10.1021/acs.jpcc.5b09903

  10. J. Lombard, T. Biben, S. Merabia, Threshold for vapor nanobubble generation around plasmonic nanoparticles. J. Phys. Chem. C 121(28), 15402–15415 (2017). https://doi.org/10.1021/acs.jpcc.7b01854

    Article  CAS  Google Scholar 

  11. A. Vogel, S. Busch, U. Parlitz, Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am. 100, 148−165 (1996). https://doi.org/10.1121/1.415878

  12. G. Baffou, J. Polleux, H. Rigneault, S. Monneret, Super-heating and micro-bubble generation around plasmonic nanoparticles under cw illumination. J. Phys. Chem. C 118, 4890–4898 (2014). https://doi.org/10.1021/jp411519k

    Article  CAS  Google Scholar 

  13. G. Baffou, Thermoplasmonics Heating Metal Nanoparticles Using Light (Cambridge University Press, Cambridge, England, 2017). https://doi.org/10.1017/9781108289801

  14. C.P. Lin, M.W. Kelly, Cavitation and acoustic emission around laser-heated microparticles. Appl. Phys. Lett. 72, 2800−2802 (1998). https://doi.org/10.1063/1.121462

  15. A. Plech, V. Kotaidis, S. Gresillon, C. Dahmen, G. von Plessen, Laser-induced heating and melting of gold nanoparticles studied by time-resolved x-ray scattering. Phys. Rev. B70, 195423 (2004). https://doi.org/10.1103/PhysRevB.70.195423

  16. E.Y. Lukianova-Hleb, D.O. Lapotko, Influence of transient environmental photothermal effects on optical scattering by gold nanoparticles. Nano. Lett. 9, 2160−2166 (2009). https://doi.org/10.1021/nl9007425

  17. C. Burda, X. Chen, X.R. Narayanan, R.M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes. Chem. Rev. 105, 1025–1102 (2005). https://doi.org/10.1021/cr030063a

  18. X. Fu, B. Chen, J. Tang, A.H. Zewail, Photoinduced nanobubble-driven superfast diffusion of nanoparticles imaged by 4D electron microscopy. Sci. Adv. 3, e1701160 (2017). https://advances.sciencemag.org/content/3/8/e1701160

  19. E. Acosta, M.G. Gonz´alez, P.A. Sorichetti, G.D. Santiago, Laser-induced bubble generation on a gold nanoparticle: A nonsymmetrical description. Phys. Rev. E 92, 062301 (2015). https://doi.org/10.1103/PhysRevE.92.062301

  20. S. aus der Wiesche, C. Rembe, E.P. Hofer, Boiling of superheated liquids near the spinodal: I General theory. Heat Mass Transf. 35, 25−31 (1999). https://doi.org/10.1007/s002310050294

  21. A. Vogel, V. Venugopalan, Mechanisms of pulsed laser ablation of biological tissues. Chem. Rev. 103, 577–644 (2003). https://doi.org/10.1021/cr010379n

    Article  CAS  PubMed  Google Scholar 

  22. Z. Liu, W.H. Hung, M. Aykol, D. Valley, S.B. Cronin, Optical manipulation of plasmonic nanoparticles, bubble formation and patterning of SERS aggregates. Nanotechnology 21(2010). https://doi.org/10.1088/0957-4484/21/10/105304

  23. M. Hu, G.V. Hartland, Heat dissipation for Au particles in aqueous solution: Relaxation time versus size. J. Phys. Chem. B 106, 7029–7033 (2002). https://doi.org/10.1021/jp020581+

    Article  CAS  Google Scholar 

  24. S. Hashimoto, D. Werner, T. Uwada, Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication. J. Photochem. Photobiol. C 13, 28–54 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.01.001

    Article  CAS  Google Scholar 

  25. M.S. Plesset, M. Prosperetti, Bubble dynamics and cavitation. Ann. Rev. Fluid Mech. 9, 145–185 (1977). https://doi.org/10.1146/annurev.fl.09.010177.001045

    Article  CAS  Google Scholar 

  26. D. Lapotko, Plasmonic nanobubbles as tunable cellular probes for cancer theranostics. Cancers 3, 802–840 (2011). https://doi.org/10.3390/cancers3010802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. T. Yin, P. Wang, R. Zheng et al., Nanobubbles for enhanced ultrasound imaging of tumors. Int. J. Nanomed. 7, 895–904 (2012). https://doi.org/10.2147/IJN.S28830

    Article  CAS  Google Scholar 

  28. O. Neumann, A.S. Urban, J. Day et al., Solar vapor generation enabled by nanoparticles. ACS Nano 7, 42–49 (2013). https://doi.org/10.1021/nn304948h

    Article  CAS  PubMed  Google Scholar 

  29. Li. Wang, Y. Feng, K. Wang et al., Solar water sterilization enabled by photothermal nanomaterials. Nano Energy 87 (2021) 106158. https://doi.org/10.1016/j.nanoen.2021.106158

  30. P. Zemanker, G. Volpe, A. Jonas et al., Perspective on light-induced transport of particles: From optical forces to phoretic motion. Adv. Opt. Photon. 11, 577–678 (2019). https://doi.org/10.1364/AOP.11.000577

    Article  Google Scholar 

  31. A. Königer, W. Köhler, Optical Funneling and trapping of gold colloids in convergent laser beams. ACS Nano 6, 4400–4409 (2012). https://doi.org/10.1021/nn301080a

    Article  CAS  PubMed  Google Scholar 

  32. V. Kajorndejnukul, W. Ding, S. Sukhov et al., Linear momentum increase and negative optical forces at dielectric interface. Nature Photon. 7, 787–790 (2013). https://www.nature.com/articles/nphoton.2013.192

  33. E. Lee, D. Huang, T. Luo, Ballistic supercavitating nanoparticles driven by single Gaussian beam optical pushing and pulling forces. Nat. Commun. 11, 2404 (2020). https://www.nature.com/articles/s41467-020-16267-9

  34. T. Mitra, A.K. Brown, D.M. Bernot et al., Laser acceleration of absorbing particles. Opt. Express 26, 6639–6652 (2018). https://doi.org/10.1364/OE.26.006639

    Article  CAS  PubMed  Google Scholar 

  35. Metal particle manipulation by laser irradiation in borosilicate glass. Opt. Express 18, 20313–20320 (2010). https://doi.org/10.1364/OE.18.020313

  36. R. Sato, J. Henzie, S. Ishii, K. Takazawa, Y. Takeda, Plasmonic-induced self-assembly of WGM cavities via laser cavitation. Opt. Express 28, 31923–31931 (2020). https://doi.org/10.1364/OE.401662

    Article  CAS  PubMed  Google Scholar 

  37. E. Galanzha, R. Weingold, D. Nedosekin et al., Spaser as a biological probe. Nat. Commun. 8, 15528 (2017). https://doi.org/10.1038/ncomms15528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. R. Xiong, K. Raemdonck, K. Peynshaert et al., Comparison of gold nanoparticle mediated photoporation: Vapor nanobubbles outperform direct heating for delivering macromolecules in live cells. ACS Nano 8, 6288–6296 (2014). https://doi.org/10.1021/nn5017742

  39. E. Teirlinck, R. Xiong, T. Brans et al., Laser-induced vapour nanobubbles improve drug diffusion and efficiency in bacterial biofilms. Nat. Commun. 9, 4518 (2018). https://www.nature.com/articles/s41467-018-06884-w

  40. C.J. Trout, J.A. Clapp, J.C. Griepenburg, Plasmonic carriers responsive to pulsed laser irradiation: a review of mechanisms, design, and applications. New J. Chem. (2021). https://doi.org/10.1039/D1NJ02062E

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuichi Hashimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hashimoto, S., Uwada, T. (2022). Laser-Induced Bubble Generation on Excitation of Gold Nanoparticles. In: Ishikawa, Y., et al. High-Energy Chemistry and Processing in Liquids. Springer, Singapore. https://doi.org/10.1007/978-981-16-7798-4_1

Download citation

Publish with us

Policies and ethics