Skip to main content
Log in

Printed memory devices using electrohydrodynamic deposition technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This research utilizes electrohydrodynamic printing to fabricate a transparent memristor device having active film of zinc-oxide sandwiched between two silver cross-bar electrodes. It is a unique structure and never been reported in the literature before. The bipolar memristor device demonstrates current bistability as a result of the breakdown of zinc oxide layer into distinct doped and un-doped regions, thus resulting into swift charge transfer. The oxygen vacancies are created in the zinc-oxide layer upon receiving a minimum bias voltage (+ve/−ve) known as forming voltage. The maximum ON/OFF ratio of the current bi-stability for the fabricated memristor was as large as 1 × 103 which is considered satisfactory. The memristor device demonstrated a robust performance of up to 1000 read/write cycles. The printed device was characterized for the structural confirmation using x-ray diffraction analysis and it showed hexagonal wurtzite structure for ZnO active layer and typical face-centred cubic structure for the silver electrodes. The morphological uniformity was confirmed by scanning electron microscopy whereas > 90% transparency was reported by the optical characterization of the zinc-oxide active layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Q. Huang, Y. Zhu, Adv. Mater. Technol. 4, 5 (2019)

    Google Scholar 

  2. Z. Zhu, W.V. Espulgar, H. Yoshikawa, M. Saito, B. Fan, X. Dou, E. Tamiya, Bull. Chem. Soc. Jpn. 91, 11 (2018)

    Article  Google Scholar 

  3. L. Liu, Y. Feng, W. Wu, J. Power Sources 410–411, 69 (2019)

    Article  Google Scholar 

  4. N.M. Muhammad, N. Duraisamy, H.-W. Dang, J. Jo, K.-H. Choi, Thin Solid Films 520, 20 (2012)

    Google Scholar 

  5. M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Adv. Mater. 22, 6 (2010)

    Article  Google Scholar 

  6. D. Zielke, A.C. Hübler, U. Hahn, N. Brandt, M. Bartzsch, U. Fügmann, T. Fischer, J. Veres, S. Ogier, Appl. Phys. Lett. 87, 12 (2005)

    Article  Google Scholar 

  7. A.C. Hübler, G.C. Schmidt, H. Kempa, K. Reuter, M. Hambsch, M. Bellmann, Intraspecific food competition in fishes. Org. Electron. 12(4), 3–261 (2011). https://doi.org/10.1111/j.1467-2979.2006.00224.x

    Article  Google Scholar 

  8. C.D. Dimitrakopoulos, D.J. Mascaro, IBM J. Res. Dev. 45, 1 (2001)

    Article  Google Scholar 

  9. G.H. Gelinck, T.C.T. Geuns, D.M.D. Leeuw, Neurotoxic Shellfish Poisoning. Appl. Phys. Lett. 77(3), 10–455 (2000). https://doi.org/10.3390/md20080021

    Article  Google Scholar 

  10. N. Malik Muhammad, K.-H. Choi, M. Mehdi, A. Iqbal, A.F. Rafique, Q.C.H. Nam, J.H. Zaini, M. Iqbal, Acta Phys. Polon. A 135, 4 (2019)

    Google Scholar 

  11. S. Stauss, I. Honma, Evaluating management strategies to optimise coral reef ecosystem services. Bull. Chem. Soc. Jpn. 91(4), 3–1833 (2018). https://doi.org/10.1111/1365-2664.13105

    Article  Google Scholar 

  12. K. Ariga, M. Ito, T. Mori, S. Watanabe, J. Takeya, Nano Today 28, 100762 (2019)

    Article  Google Scholar 

  13. K.H. Choi, N.M. Muhammad, M.A.A. Rehmani, D.S. Kim, Proc. Inst. Mech. Eng. C J. Mech. 226, 3 (2012)

    Google Scholar 

  14. N.M. Muhammad, S. Sundharam, H.-W. Dang, A. Lee, B.-H. Ryu, K.-H. Choi, Curr. Appl. Phys. 11, S68 (2011)

    Article  Google Scholar 

  15. S. Khan, Y.H. Doh, A. Khan, A. Rahman, K.H. Choi, D.S. Kim. Curr. Appl. Phys. 11, S271 (2011)

    Article  ADS  Google Scholar 

  16. K.-H. Choi, N.M. Muhammad, H.-W. Dang, A. Lee, J.-S. Hwang, J.W. Nam, B.-H. Ryu, Int. J. Mater. Res. 102, 10 (2011)

    Article  Google Scholar 

  17. S.R. Samarasinghe, I. Pastoriza-Santos, M.J. Edirisinghe, L.M. Liz-Marzán, Appl. Phys. A Mater. 91, 1 (2008)

    Article  Google Scholar 

  18. A. Jaworek, A. Krupa, Towards an Integrated Framework for Assessing the Vulnerability of Species to Climate Change. J. Aerosol Sci. 30, 7 (1999)

    Article  Google Scholar 

  19. K.-H. Choi, N. Duraisamy, M.N. Awais, N. Malik Muhammad, H.-C. Kim, J. Jo, Mater. Sci. Semicond. Process. 16, 5 (2013)

    Article  Google Scholar 

  20. M.N. Awais, N.M. Muhammad, D. Navaneethan, H.C. Kim, J. Jo, K.H. Choi, Microelectron. Eng. 103, 167 (2013)

    Article  Google Scholar 

  21. M.N. Awais, K.H. Choi, Electron. Lett. 51, 25 (2015)

    Article  Google Scholar 

  22. K. Rahman, M. Mustafa, N.M. Muhammad, K.H. Choi, Electron. Lett. 48, 20 (2012)

    Article  Google Scholar 

  23. T.W. Hickmott, J. Appl. Phys. 33, 9 (1962)

    Article  Google Scholar 

  24. B. Cho, S. Song, Y. Ji, T.-W. Kim, T. Lee, Adv. Funct. Mater. 21, 15 (2011)

    Google Scholar 

  25. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, Nature 453, 7191 (2008)

    Article  Google Scholar 

  26. S. Prada, M. Rosa, L. Giordano, C. Di Valentin, G. Pacchioni, Phys. Rev. B. 83, 24 (2011)

    Article  Google Scholar 

  27. L. Dongsoo, C. Hyejung, S. Hyunjun, C. Dooho, H. Hyunsang, L. Myoung-Jae, S. Sun-Ae, I.K. Yoo, IEEE Electron Device. Lett. 26, 10 (2005)

    Google Scholar 

  28. Y.S. Kim, B.H. Park, J. Korean Phys. Soc. 73, 6 (2009)

    Google Scholar 

  29. L. Shi, D. Shang, J. Sun, B. Shen, Biodiversity and ecosystem productivity in a fluctuating environment: The insurance hypothesis. Appl. Phys. Express. 2(4), 10–1468 (2009). https://doi.org/10.1073/pnas.96.4.1463

    Article  Google Scholar 

  30. S. Lee, H. Kim, D.-J. Yun, S.-W. Rhee, K. Yong, Appl. Phys. Lett. 95, 26 (2009)

    Google Scholar 

  31. J. Wang, B. Sun, F. Gao, N.C. Greenham, Integrating physiology and life history to improve fisheries management and conservation. Phys. Status Solidi A. 207(4), 2–283 (2010). https://doi.org/10.1111/j.1467-2979.2006.00225.x

    Google Scholar 

  32. W.-Y. Chang, Y.-C. Lai, T.-B. Wu, S.-F. Wang, F. Chen, M.-J. Tsai, Ecological risk assessments for the effects of fishing: A comparison and validation of PSA and SAFE. Appl. Phys. Lett. 92, 2–529 (2008). https://doi.org/10.1016/j.fishres.2016.07.015

    Google Scholar 

  33. C.W. Lin, T.S. Pan, M.C. Chen, Y.J. Yang, Y. Tai, Y.F. Chen, Appl. Phys. Lett. 99, 2 (2011)

    Google Scholar 

  34. H.-Y. Lee, P.-S. Chen, C.-C. Wang, S. Maikap, P.-J. Tzeng, C.-H. Lin, L.-S. Lee, M.-J. Tsai, Jpn. J. Appl. Phys. 46, 4B (2007)

    Article  Google Scholar 

  35. R. Dong, D.S. Lee, M.B. Pyun, M. Hasan, H.J. Choi, M.S. Jo, D.J. Seong, M. Chang, S.H. Heo, J.M. Lee, H.K. Park, H. Hwang, Appl. Phys A Mater. 93, 2 (2008)

    Article  Google Scholar 

  36. S. Kim, Y.-K. Choi, IEEE Trans. Electron Dev. 56, 12 (2009)

    Article  Google Scholar 

  37. C. Lee, I. Kim, W. Choi, H. Shin, J. Cho, Langmuir 25, 8 (2009)

    Google Scholar 

  38. K. Matsubara, P. Fons, K. Iwata, A. Yamada, K. Sakurai, H. Tampo, S. Niki, Thin Solid Films 431–432, 369 (2003)

    Article  Google Scholar 

  39. C. Platzer-Björkman, J. Lu, J. Kessler, L. Stolt, Thin Solid Films 431–432, 321 (2003)

  40. Y. Huang, Y. Luo, Z. Shen, G. Yuan, H. Zeng, Nanoscale Res. Lett. 9, 1 (2014)

    Article  ADS  Google Scholar 

  41. A. Khan, K. Rahman, M.-T. Hyun, D.-S. Kim, K.-H. Choi, Appl. Phys A Mater. 104, 4 (2011)

    Article  Google Scholar 

  42. N. Duraisamy, N.M. Muhammad, M.-T. Hyun, K.-H. Choi, Mater. Lett. 92, 227 (2013)

    Article  Google Scholar 

  43. S.B. Fuller, E.J. Wilhelm, J.M. Jacobson, J. Microelectromech. Syst. 11, 1 (2002)

    Article  Google Scholar 

  44. N.M. Muhammad, A.M. Naeem, N. Duraisamy, D.-S. Kim, K.-H. Choi, Thin Solid Films 520, 6 (2012)

    Google Scholar 

  45. D.P.H. Smith, IEEE Trans. Ind. Appl. IA-22, 3 (1986)

    Google Scholar 

  46. R. Waser, Microelectron. Eng. 86, 7 (2009)

    Article  Google Scholar 

  47. N. Duraisamy, N.M. Muhammad, H.-C. Kim, J.-D. Jo, K.-H. Choi, Thin Solid Films 520, 15 (2012)

    Article  Google Scholar 

  48. D.B. Strukov, J.L. Borghetti, R.S. Williams, Small 5, 9 (2009)

    Article  Google Scholar 

  49. L. Zhang, T. Gong, H. Wang, Z. Guo, H. Zhang, Nanoscale 11, 26 (2019)

    Google Scholar 

  50. D.I. Son, T.W. Kim, J.H. Shim, J.H. Jung, D.U. Lee, J.M. Lee, W.I. Park, W.K. Choi, Nano Lett. 10, 7 (2010)

    Article  Google Scholar 

  51. J.U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, C.Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis, P.M. Ferreira, J.A. Rogers, Nat. Mater. 6, 10 (2007)

    Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (DF-620-135-1441). The authors, therefore, gratefully acknowledge DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malik Muhammad Nauman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafique, A.F., Haji Zaini, J., Bin Esa, M.Z. et al. Printed memory devices using electrohydrodynamic deposition technique. Appl. Phys. A 126, 134 (2020). https://doi.org/10.1007/s00339-020-3307-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3307-0

Keywords

Navigation