Skip to main content
Log in

Analyzed electrical performance and induced interface passivation of fabricated Al/NTCDA/p-Si MIS–Schottky heterojunction

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this research, the significant role of 1,4,5,8-naphthalenetetracarboxylic-dianhydride, NTCDA, thin film on the Al/p-Si barrier under different temperatures is investigated. The structural and topographical properties of the thermally evaporated NTCDA thin film are investigated using a transmission electron microscope, TEM, and atomic force microscope, AFM, respectively, and elucidated that the fabricated films have a smooth nanocrystalline nature with an average crystallite size about 89 nm and average roughness about 3.15 nm. Furthermore, the current–voltage (IV) characteristics of Al/NTCDA/p-Si/Al device are studied under dark conditions at different temperatures (313–383 K). The Schottky diode electronic parameters such as ideality factor, n, barrier height, ΦB, and reverse saturation current, Is, are calculated at each temperature. A clear increment of ΦB from 0.74 to 0.88 eV accompanied by a clear decrement of n values from 5.83 to 4.99 under increasing temperature (313–383) K is noticed. Due to the inhomogeneity of barrier height, the Gaussian distribution of Schottky barrier height is employed to estimate the mean value of barrier height and standard deviation and found to be 1.5 eV and 20 mV, respectively. The modified Richardson plot is used to estimate the modified Richardson constant and found to be 35.2 A cm−2 K−2 which is close to the known value of p-Si. Moreover, the conduction mechanism in forward and reverse biasing is explained in details. The modified Norde's function is employed for estimating the series resistance, Rs, and barrier height of the fabricated device at each temperature, where the values of Rs showed a decrement behavior from 3.564 to 1.165 kΩ upon increasing the temperature. The process of inserting NTCDA between electrode and p-Si influenced the distribution of interface states for MIS Schottky diode at different temperatures and is explained as a passivation process of the device's interface states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10
Fig.11
Fig.12
Fig.13
Fig.14
Fig.15

Similar content being viewed by others

References

  1. M.V. Jacob, Organic semiconductors: past, present and future. Electronics 3, 594–597 (2014)

    Article  Google Scholar 

  2. J.D. Myers, J. Xue, Organic semiconductors and their applications in photovoltaic devices. Polym Rev 52, 1–37 (2012)

    Article  Google Scholar 

  3. V. Coropceanu, H. Li, P. Winget, L. Zhu, J.-L. Bredas, Electronic-structure theory of organic semiconductors: charge-transport parameters and metal/organic interfaces. Ann. Rev. Mater. Res. 43(1), 63–87 (2013)

    Article  ADS  Google Scholar 

  4. A. Ahmadiv, B. Gerislioglu, Z. Ramezani, Generation of magnetoelectric photocurrents using toroidal resonances: a new class of infrared plasmonic photodetectors. Nanoscale 11, 13108–13116 (2019)

    Article  Google Scholar 

  5. P. Martyniuk, J. Antoszewski, M. Martyniuk, L. Faraone, A. Rogalski, New concepts in infrared photodetector designs. Appl. Phys. Rev. 1, 041102 (2014)

    Article  Google Scholar 

  6. V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, J.-L. Brédas, Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007)

    Article  Google Scholar 

  7. C. Groves, Simulating charge transport in organic semiconductors and devices: a review. Rep. Prog. Phys. 80, 026502–026538 (2017)

    Article  ADS  Google Scholar 

  8. M. Häming, A. Schöll, E. Umbach, F. Reinert, Adsorbate-substrate charge transfer and electron-hole correlation at adsorbate/metal interfaces. Phys. Rev. B 85, 235132–235144 (2012)

    Article  ADS  Google Scholar 

  9. J. Ziroff, S. Hame, M. Kochler, A. Bendounan, A. Schöll, F. Reinert, Low-energy scale excitations in the spectral function of organic monolayer systems. Phys. Rev. B 85, 161404–161408 (2012)

    Article  ADS  Google Scholar 

  10. A. Bendounan, F. Forster, A. Schöll, D. Batchelor, J. Ziroff, E. Umbach, F. Reinert, Electronic structure of 1 ML NTCDA/Ag(111) studied by photoemission spectroscopy. Surf. Sci. 601, 4013–4017 (2007)

    Article  ADS  Google Scholar 

  11. S.M. Barlow, R. Raval, Complex organic molecules at metal surfaces: bonding, organisationand chirality. Surf. Sci. Rep. 50, 201–341 (2003)

    Article  ADS  Google Scholar 

  12. C. Stadler, S. Hansen, A. Schöll, T.-L. Lee, J. Zegenhagen, C. Kumpf, E. Umbach, Molecular distortion of NTCDA upon adsorption on Ag(111): a normal incidence x-ray standing wave study. New J. Phys. 9, 50–58 (2007)

    Article  ADS  Google Scholar 

  13. R. Tonner, P. Rosenow, P. Jakob, Molecular structure and vibrations of NTCDA monolayers on Ag(111) from density-functional theory and infrared absorption spectroscopy. Phys. Chem. Chem. Phys. 18, 6316–6328 (2016)

    Article  Google Scholar 

  14. S. Kera, S. Tanaka, H. Yamane, D. Yoshimura, K.K. Okudaira, K. Seki, N. Ueno, Quantitative analysis of photoelectron angular distribution of single-domain organic monolayer film: NTCDA on GeS(001). Chem. Phys. 325, 113–120 (2006)

    Article  Google Scholar 

  15. A.S. Komolov, P.J. Møller, Y.G. Aliaev, E.F. Lazneva, S. Akhremtchik, F.S. Kamounah, J. Mortensen, K. Schaumburg, Organic–organic interfaces and unoccupied electronic states of thin films of perylene and naphthalene derivatives. J. Mol. Struct. 744–747, 145–149 (2005)

    Article  ADS  Google Scholar 

  16. H. Tachikawa, H. Kawabata, A density functional theory study on the degradation mechanism of thin film of organic semiconductor by water molecules. Thin Solid Films 516, 3287–3293 (2008)

    Article  ADS  Google Scholar 

  17. H. Tachikawa, H. Kawabata, Electronic states of alkali metal-NTCDA complexes: a DFT study. Solid State Sci. 48, 141–146 (2015)

    Article  ADS  Google Scholar 

  18. X. Han, F. Yi, T. Sun, J. Sun, Synthesis and electrochemical performance of Li and Ni 1,4,5,8-naphthalenetetracarboxylates as anodes for Li-ion batteries. Electrochem. Commun. 25, 136–139 (2012)

    Article  Google Scholar 

  19. E.R. Triboni, M.F.P. Da Silva, A.T. Finco, M.A. Rodrigues, G.J.-F. Demets, F.H. Dyszy, P.C. Isolani, P.B. Filho, M.J. Politi, Synthesis and properties of new paramagnetic hybrid bayerite from Al(0)/naphthalene dianhydride reaction. Mater. Res. 13(4), 505–511 (2010)

    Article  Google Scholar 

  20. S. Tanida, K. Noda, H. Kawabata, K. Matsushige, N-channel thin-film transistors based on 1,4,5,8-naphthalene tetracarboxylic dianhydride with ultrathin polymer gate buffer layer. Thin Solid Films 518, 571–574 (2009)

    Article  ADS  Google Scholar 

  21. W.T. Hammond, J.P. Mudrick, J. Xue, Balancing high gain and bandwidth in multilayer organic photodetectors with tailored carrier blocking layers. J. Appl. Phys. 116, 214501–214508 (2014)

    Article  ADS  Google Scholar 

  22. M. Hiramoto, A. Miki, M. Yoshida, M. Yokoyama, Photocurrent multiplication in organic single crystals. Appl. Phys. Lett. 81(8), 1500–1502 (2002)

    Article  ADS  Google Scholar 

  23. L. Torsi, A. Dodabalapur, N. Cioffi, L. Sabbatini, P.G. Zambonin, NTCDA organic thin-film-transistor as humidity sensor: weaknesses and strengths. Sens. Actuators B. 77, 7–11 (2001)

    Article  Google Scholar 

  24. H.E. Katz, A.J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y.-Y. Lin, A.A. Dodabalapur, Soluble and air-stable organic semiconductor with high electron mobility. Nature 404(30), 478–480 (2000)

    Article  ADS  Google Scholar 

  25. S.T. Pérez-Merchancano, G.E. Marques, L.E. Bolivar-Marinez, Optical transitions in new trends organic materials. Microelectron. J. 39, 576–578 (2008)

    Article  Google Scholar 

  26. H. Abdel-Khalek, E. Shalaan, M. Abd- El Salam, A.M. El-Sagheer, A.M. El-Mahalawy, Effect of thermal annealing on structural, linear and nonlinear optical properties of 1,4,5,8-naphthalene tetracarboxylic dianhydride thin films. J. Mol. Struct. 1178, 408–419 (2019)

    Article  ADS  Google Scholar 

  27. T. Gerbich, H.-C. Schmitt, I. Fischer, J. Petersen, J. Albert, R. Mitrić, A time-resolved study of 1,8-naphthalic anhydride and 1,4,5,8-naphthalene-tetracarboxylic dianhydride. J. Phys. Chem. A. 119(23), 6006–6016 (2015)

    Article  Google Scholar 

  28. C. Falkenberg, C. Uhrich, B. Maennig, M.K. Riede, K. Leo, 1,4,5,8-Naphthalenetetracarboxylic dianhydride as transparent electron transport material in organic p-i-n solar cells. Proc. SPIE. 6999, 69990S-1–69990S-8 (2008).

  29. B.E. Lassiter, G. Wei, S. Wang, J.D. Zimmerman, V.V. Diev, M.E. Thompson, S.R. Forrest, Organic photovoltaics incorporating electron conducting exciton blocking layers. Appl. Phys. Lett. 98, 243307–243309 (2011)

    Article  ADS  Google Scholar 

  30. M. Zhu, G. Liang, T. Cui, K. Varahramyan, Depletion-mode n-channel organic field-effect transistors based on NTCDA. Solid-State Electron. 47, 1855–1858 (2003)

    Article  ADS  Google Scholar 

  31. L. Torsi, Novel applications of organic based thin film transistors. Microelectron. Reliab. 40, 779–782 (2000)

    Article  Google Scholar 

  32. L. Torsi, A. Dodabalapur, L. Sabbatini, P.G. Zambonin, Multi-parameter gas sensors based on organic thin-film-transistors. Sens. Actuators B. 67, 312–316 (2000)

    Article  Google Scholar 

  33. G. Liang, T. Cui, K. Varahramyan, Electrical characteristics of diodes fabricated with organic semiconductors. Microelectron. Eng. 65, 279–284 (2003)

    Article  Google Scholar 

  34. T. Katsume, M. Hiramoto, M. Yokoyama, Photocurrent multiplication in naphthalene tetracarboxylic anhydride film at room temperature. Appl. Phys. Lett. 69, 3722–3724 (1996)

    Article  ADS  Google Scholar 

  35. S.R. Forrest, F.F. So, Organic optoelectronic devices and methods. US patent 5315129 May 24 (1994)

  36. K.-S. Kim, S.-C. Park, J.-G. Nam, M. Hiramoto, Organic photoelectric conversion film, and photoelectric conversion device and image sensor each having the organic photoelectric conversion film. US patent 2009/0294761 A1 (2009)

  37. Y.-M. Koo, O.-K. Song, Spontaneous charge transfer from indium tin oxide to organic molecules for effective hole injection. Appl. Phys. Lett. 94, 153302–153304 (2009)

    Article  ADS  Google Scholar 

  38. Z. Jehl, M. Bouttemy, D. Lincot, J.F. Guillemoles, I. Gerard, A. Etcheberry, G. Voorwinden, M. Powalla, N. Naghavi, Insights on the influence of surface roughness on photovoltaic properties of state of the art copper indium gallium diselenide thin films solar cells. J. Appl. Phys. 111, 114509–114515 (2012)

    Article  ADS  Google Scholar 

  39. M. Zawodzki, R. Resel, M. Sferrazza, O. Kettner, B. Friedel, Interfacial morphology and effects on device performance of organic bilayer heterojunction solar cells. ACS Appl. Mater. Interfaces 7(30), 16161–16168 (2015)

    Article  Google Scholar 

  40. S.-Y. Lien, Y.-S. Cho, Y. Shao, C.-H. Hsu, C.-C. Tsou, W. Yan, P. Han, D.-S. Wuu, Influence of surface morphology on the effective lifetime and performance of silicon heterojunction solar cell. Int. J. Photoenergy 2015, 1–8 (2015)

    Article  Google Scholar 

  41. D. Benmoussa, B. Meriem, K. Hamid, O.-A. Amaria, Study the effect of surface recombination velocity on performance of solar cells based sige. 4th international conference on automation, control engineering and computer science (ACCS-2017). Proc. Eng. Technol. 19, 78–81 (2017)

    Google Scholar 

  42. P. Zhang, Effects of surface roughness on electrical contact, RF heating and field enhancement. Ph.D. Dissertation, The University of Michigan, USA (2012)

  43. O.S. Cifci, M. Bakir, J.L. Meyer, A. Kocyigit, Morphological and electrical properties of ATSP/p-Si photodiode. Mat. Sci. Semicond. Proc. 74, 175–182 (2018)

    Article  Google Scholar 

  44. J. Zhou, J. Huang, Photodetectors based on organic–inorganic hybrid lead halide perovskites. Adv. Sci. 5, 1700256–1700279 (2018)

    Article  Google Scholar 

  45. M.M. Makhlouf, M.M. El-Nahass, M.H. Zeyada, Fabrication, temperature dependent current-voltage characteristics and photoresponse properties of Au/α-PbO2/p-Si/Al heterojunction photodiode. Mat. Sci. Semicond. Proc. 58, 68–75 (2017)

    Article  Google Scholar 

  46. K.V. Chizh, V.A. Chapnin, V.P. Kalinushkin, V.Y. Resnik, M.S. Storozhevykh, V.A. Yuryev, Metal silicide/poly-Si Schottky diodes for uncooled microbolometers. Nanosc. Res. Lett. 8, 177 (2013)

    Article  ADS  Google Scholar 

  47. A.G. Imer, Y.S. Ocak, Effect of light intensity and temperature on the current voltage characteristics of Al/SY/p-Si organic–inorganic heterojunction. J. Electron. Mater. 45(10), 5347–5355 (2016)

    Article  ADS  Google Scholar 

  48. J. Lee, T. Uhrmann, T. Dimopoulos, H. Bruckl, J. Fidler, TEM study on diffusion process of NiFe Schottky and MgO/NiFe tunneling diodes for spin injection in silicon. IEEE Trans. Magn. 46, 2067–2069 (2010)

    Article  ADS  Google Scholar 

  49. A. Tataroğlu, F.Z. Pür, The Richardson constant and barrier inhomogeneity at Au/Si3N4/n-Si (MIS) Schottky diodes. PhysicaScripta 88, 15801–15806 (2013)

    Google Scholar 

  50. Z. Yuan, A photodiode with high rectification ratio and low turn-on voltage based on ZnO nanoparticles and SubPc planar heterojunction. Phys. E 56, 160–164 (2014)

    Article  Google Scholar 

  51. N.P. Maity, R. Maity, R.K. Thapa, S. Baishya, Image force effect on tunneling current for ultrathin high-K dielectric material Al2O3 based metal oxide semiconductor devices. J. Nanoelectron. Optoelectron. 10, 645–648 (2015)

    Article  Google Scholar 

  52. M.A. Mayimele, J.P.J. Van Rensburg, F.D. Auret, M. Diale, Analysis of temperature dependant current-voltage characteristics and extraction of series resistance in Pd/ ZnO Schottky barrier diodes. Phys. B Condens. Matter. 480, 58–62 (2016)

    Article  ADS  Google Scholar 

  53. H.M. Zeyada, M.M. El-Nahass, M.M. El-Shabaan, Photovoltaic properties of the 4H-pyrano[3,2-c]quinoline derivatives and their applications in organic–inorganic photodiode fabrication. Synth. Methods 220, 102–113 (2016)

    Article  Google Scholar 

  54. H. Abdel-Khalek, E. Shalaan, M. Abd-El Salam, A. M. El-Mahalawy, Effect of illumination intensity on the characteristics of Cu(acac)2/n-Si photodiode. Synth. Methods 245, 223–236 (2018).

  55. S. Mahato, D. Biswas, L.G. Gerling, C. Voz, J. Puigdollers, Analysis of temperature dependent current–voltage and capacitance–voltage characteristics of an Au/V2O5/n-Si Schottky diode. AIP Adv. 7, 085313 (2017)

    Article  ADS  Google Scholar 

  56. D. Zhu, J. Xu, A.N. Noemaun, J.K. Kim, E.F. Schubert, M.H. Crawford, D.D. Koleske, The origin of the high diode-ideality factors in GaInN/GaN multiple quantum well light-emitting diodes. Appl. Phys. Lett 94, 081113 (2009)

    Article  ADS  Google Scholar 

  57. S. Mahato, Composition analysis of two different PEDOT:PSS commercial products used as an interface layer in Au/n-Si Schottky diode. RSC Adv. 7, 47125–47131 (2017)

    Article  Google Scholar 

  58. R.K. Gupta, K. Ghosh, P.K. Kahol, Fabrication and electrical characterization of Au/p-Si/STO/Au contact. Curr. Appl. Phys. 9, 933–936 (2009)

    Article  ADS  Google Scholar 

  59. J. Osvald, Temperature dependence of barrier height parameters of inhomogeneous Schottky diodes. Microelectron. Eng. 86, 117–120 (2009)

    Article  Google Scholar 

  60. A. Tombak, Y.S. Ocak, S. Asubay, T. Kilicoglu, F. Ozkahraman, Fabrication and electrical properties of an organic-inorganic device based on Coumarin 30 dye. Mat. Sci. Semicond. Proc. 24, 187–192 (2014)

    Article  Google Scholar 

  61. I. Hussain, M.Y. Soomro, N. Bano, O. Nur, M. Willander, Systematic study of interface trap and barrier inhomogeneities using I-V-T characteristics of Au/ZnOnanorods Schottky diode. J. Appl. Phys. 113, 234509–234515 (2013)

    Article  ADS  Google Scholar 

  62. T. Tunç, Ş. Altindal, İ. Uslu, İ. Dӧkme, H. Uslu, Temperature dependence current-voltage (I–V) characteristics of Au/n-S (111) Schottky barrier diodes with PVA (Ni, Zn-doped) interfacial layer. Mat. Sci. Semicond. Proc. 14, 139–145 (2011)

    Article  Google Scholar 

  63. R.D. Gould, The interpretation of space-charge-limited currents in semiconductors and insulators. J. Appl. Phys. 53(4), 3353–3355 (1982)

    Article  ADS  Google Scholar 

  64. N.F. Mott, R.W. Gurney, Electronic Processes in Ionic Crystals (Oxford University Press, London, 1940)

    MATH  Google Scholar 

  65. H.S. Soliman, A.A.M. Farag, N.M. Khosifan, T.S. Solami, Electronic and photovoltaic properties of Au/pyronine G(Y)/p-GaAs/Au: Zn heterojunction. J. Alloys Compd. 530, 157–163 (2012)

    Article  Google Scholar 

  66. M.M. El-Nahass, H.S. Metwally, H.E.A. El-Sayed, A.M. Hassanien, Electrical and photovoltaic properties of FeTPPCl/p-Si heterojunction. Synth. Methods 161, 2253–2258 (2011)

    Article  Google Scholar 

  67. H.M. Zeyada, M.M. El-Nahass, E.M. El-Menyawy, A.S. El-Sawah, Electrical and photovoltaic characteristics of indium phthalocyanine chloride/p-Si solar cell. Synth. Methods 207, 46–53 (2015)

    Article  Google Scholar 

  68. H.A. Afify, M.M. El-Nahass, A.-S. Gadallah, M.A. Khedr, Carrier transport mechanisms and photodetector characteristics of Ag/TiOPc/p-Si/Al hybrid heterojunction. Mat. Sci. Semicond. Proc. 39, 324–331 (2015)

    Article  Google Scholar 

  69. M.A. Lampert, Volume-controlled current injection in insulators. Rep. Prog. Phys. 27, 329–367 (1964)

    Article  ADS  MATH  Google Scholar 

  70. M.A. Lampert, Simplified theory of space-charge-limited currents in an insulator with traps. Phys. Rev. 103, 1648–1656 (1956)

    Article  ADS  Google Scholar 

  71. I.S. Yahia, G.B. Sakr, T. Wojtowicz, G. Karczewski, p-ZnTe/n-CdMnTe/n-GaAs diluted magnetic diode for photovoltaic applications. Semicond. Sci. Technol. 25, 095001–095008 (2010). https://doi.org/10.1088/0268-1242/25/9/095001

    Article  ADS  Google Scholar 

  72. P.K. Nayak, N. Periasamy, Calculation of electron affinity, ionization potential, transport gap, optical band gap and exciton binding energy of organic solids using 'solvation’ model and DFT. Org. Electron. 10, 1396–1400 (2009)

    Article  Google Scholar 

  73. C.H. Kim, O. Yaghmazadeh, Y. Bonnassieux, G. Horowitz, Modeling the low-voltage regime of organic diodes: origin of the ideality factor. J. Appl. Phys. 110, 093722 (2011)

    Article  ADS  Google Scholar 

  74. S.R. Forrest, Organic–inorganic semiconductor devices and 3,4,9,10 perylenetetracarboxylicdianhydride: an early history of organic electronics. J. Phys. Condens. Matter 15, S2599–S2610 (2003)

    Article  ADS  Google Scholar 

  75. P. Pipinys, V. Lapeika, Analysis of reverse-bias leakage current mechanisms in metal/GaN Schottky diodes. Adv. Condens. Matter Phys. (2010). https://doi.org/10.1155/2010/526929

    Article  Google Scholar 

  76. H.M. Zeyada, M.I. Youssif, N.A. El-Ghamaz, M.A. Nasher, Carrier transport mechanisms and photovoltaic characteristics of Au/ toluidine blue/n-Si/Al heterojunction solar cell. J. Mater. Sci. Mater. Electron. 29, 3592–3601 (2018)

    Article  Google Scholar 

  77. A.M. Nawar, M.M. Makhlouf, Au-nanoparticles doped SiO2 interfacial layer to promote the photovoltaic characteristics of Au/p-Si/Al solar cells. J. Alloys Compd. 767, 1271–1281 (2018)

    Article  Google Scholar 

  78. V. Aubry, F. Meyer, Schottky diodes with high series resistance: limitations of forward I–V methods. J. Appl. Phys. 76, 7973–7984 (1994)

    Article  ADS  Google Scholar 

  79. H. Norde, A modified forward I–V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052–5053 (1979)

    Article  ADS  Google Scholar 

  80. K. Sato, Y. Yasumura, Study of forward I–V plot for Schottky diodes with high series resistance. J. Appl. Phys. 58, 3655–3657 (1985)

    Article  ADS  Google Scholar 

  81. A.M. Cowley, S.M. Sze, Surface states and barrier height of metal-semiconductor systems. J. Appl. Phys. 36, 3212 (1965)

    Article  ADS  Google Scholar 

  82. B. Boyarbay, H. Çetin, A. Uygun, E. Ayyildiz, Electrical characterization and fabrication of organic/inorganic semiconductor heterojunctions. Appl. Phys. A 103, 89–96 (2011)

    Article  ADS  Google Scholar 

  83. A. Ugur, A.G. Imer, Y.S. Ocak, Electrical and photoelectrical characterization of an organic–inorganic heterojunction based on quinolone yellow dye. Mat. Sci. Semicond. Proc. 39, 569–574 (2015)

    Article  Google Scholar 

  84. E. Elgazzar, A. Tataroğlu, A.A. Al-Ghamdi, Y. Al-Turki, W.A. Farooq, F. El-Tantawy, F. Yakuphanoglu, Thermal sensors based on delafossite film/p-silicon diode for low-temperature measurements. Appl. Phys. A 122, 617–625 (2016)

    Article  ADS  Google Scholar 

  85. K. Akkılıç, Y.S. Ocak, T. Kılıçoğlu, S. İlhan, H. Temel, Calculation of current-voltage characteristics of a Cu (II) complex/n-Si/AuSb Schottky diode. Curr. Appl. Phys. 10, 337–341 (2010)

    Article  ADS  Google Scholar 

  86. L. Dasaradha Rao, N. Ramesha Reddy, A. Ashok Kumar, V. Rajagopal Reddy, Temperature dependent electrical properties of rare-earth metal Er Schottky contact on p-type InP. AIP Conf. Proc. 1536, 471–472 (2013)

    ADS  Google Scholar 

  87. S. Sankar Naik, V. Rajagopal Reddy, Temperature dependency and current transport mechanisms of Pd/V/n-type InPschottky rectifiers. Adv. Mat. Lett. 3(3), 188–196 (2012)

    Article  Google Scholar 

  88. S. Avasthi, Y. Qi, G.K. Vertelov, J. Schwartz, A. Kahn, J.C. Sturm, Silicon surface passivation by an organic overlayer of 9,10-phenanthrenequinone. Appl. Phys. Lett. 96, 222109 (2010)

    Article  ADS  Google Scholar 

  89. A. Vilan, D. Cahen, Chemical modification of semiconductor surfaces for molecular electronics. Chem. Rev. 117, 4624–4666 (2017)

    Article  Google Scholar 

  90. S.M. Sze, Physics of Semiconductors Devices (Wiely, New York, 1969)

    Google Scholar 

  91. P.K. Nayak, N. Periasamy, Calculation of electron affinity, ionization potential, transport gap, optical band gap and exciton binding energy of organic solids using solvation model and DFT. Org Electron 10, 1396–1400 (2009)

    Article  Google Scholar 

  92. A. Nollau, M. Pfeiffer, T. Fritz, K. Leo, Controlled n-type doping of a molecular organic semiconductor: naphthalenetetracarboxtlic dianhydride (NTCDA) doped with bis (ethylenedithio)-tetrathiafulvalene (BEDT-TTF). J. Appl. Phys. 87, 4340 (2000)

    Article  ADS  Google Scholar 

  93. D. Somvanshi, S. Jit, Analysis of temperature-dependent electrical characteristics of n-ZnO nanowires (NWs)/p-Si heterojunction diodes. IEEE Trans. Nanotechnol. 13(1), 62–69 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors kindly thank Prof. Hefny Abd-El Khalek, Professor of Solid State Physics, Physics Department, Faculty of Science, Suez Canal University for his helpful discussion.

Funding

This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. Nawar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawar, A.M., Abd-Elsalam, M., El-Mahalawy, A.M. et al. Analyzed electrical performance and induced interface passivation of fabricated Al/NTCDA/p-Si MIS–Schottky heterojunction. Appl. Phys. A 126, 113 (2020). https://doi.org/10.1007/s00339-020-3289-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3289-y

Keywords

Navigation