Skip to main content
Log in

Microstructure and dielectric properties of LiTaO3 ceramics with MnO2 addition fabricated by hot-pressing sintering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Lithium tantalite (LiTaO3) is an excellent single crystal, only a few studies focused on polycrystalline LiTaO3 ceramics, because it is difficult to sintering densification in fabrication process by common sintering. In this paper, LiTaO3 composite ceramics with added 3 wt% MnO2 were obtained by hot-pressing sintering at different temperatures from 1200 to 1350 °C. The sinterability, microstructure and dielectric properties of LiTaO3 ceramics fabricated at sintering temperatures were investigated. The relative density of the LiTaO3 ceramics was significantly enhanced as the sintering temperature increases first and then decreased. The LiTaO3 ceramics achieved the highest relative density (98.6%) and shown homogeneous microstructure when sintered at 1300 °C. The LiTaO3 and manganese oxide phases were observed in the MnO2/LiTaO3 ceramics fabricated at different sintering temperatures. The dielectric properties of MnO2/LiTaO3 ceramics were significantly influenced by the sintering temperatures. The study of dielectric properties revealed that the specimen had excellent dielectric properties when sintering temperature was 1300 °C and the dielectric constant was 78, as it tends to stay invariable at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Cho, K. Fujimoto, Y. Hiranage, Y. Wagatsuma, A. Onoe, K. Twrabe, K. Kitamura, Appl. Phys. Lett. 81, 4401 (2002)

    Article  ADS  Google Scholar 

  2. K. Länge, B.E. Rapp, M. Rapp, Anal. Bioanal. Chem. 391, 1509 (2008)

    Article  Google Scholar 

  3. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature 432, 84 (2004)

    Article  ADS  Google Scholar 

  4. X.X. Gong, M. Fang, G.T. Fei, M. Liu, F.D. Li, G.L. Shang, L.D. Zhang, RSC. Adv. 5, 31615 (2015)

    Article  Google Scholar 

  5. J. Ravez, G.T. Joo, J. Senegas, P. Hagenmuller, Jpn. J. Appl. Phys. 24, 1000 (1985)

    Article  Google Scholar 

  6. P. Reichenbach, T. Kämpfe, A. Thiessen, A. HaußMann, T. Woike, L.M. Eng, Appl. Phys. Lett. 105, 122906 (2014)

    Article  ADS  Google Scholar 

  7. D. Ming, J.M. Reau, J. Rzvez, J. Gitate, P. Hagenmuller, J. Solid State Chem. 116, 185 (1995)

    Article  ADS  Google Scholar 

  8. M. Gruber, I. Kraleva, P. Supancic, J. Bielen, D. Kiener, R. Bermejo, J. Eur. Ceram. Soc. 37, 4397 (2017)

    Article  Google Scholar 

  9. L. Tian, V. Gopalan, L. Galambos, Appl. Phys. Lett. 85, 4445 (2004)

    Article  ADS  Google Scholar 

  10. P. Bomlai, P. Sinsap, S. Muensit, S.J. Milne, J. Am. Ceram. Soc. 91, 624 (2008)

    Article  Google Scholar 

  11. C.F. Chen, G.L. Brennecka, G. King, E.L. Tegtmeier, T. Holesinger, J. Ivy, P. Yang, J. Mater. Sci. Mater. Electron. 28, 3725 (2017)

    Article  Google Scholar 

  12. A. Huanosta, A.R. West, J. Appl. Phys. 67, 5386 (1987)

    Article  ADS  Google Scholar 

  13. J.J. Zhou, J.F. Li, K. Wang, X.W. Zhang, J. Mater. Sci. 46, 5111 (2011)

    Article  ADS  Google Scholar 

  14. T. Yang, Y.G. Liu, L. Zhang, M.L. Hu, O. Yang, Z.H. Huang, M.H. Fang, Adv. Powder Technol. 25, 933 (2014)

    Article  Google Scholar 

  15. C.F. Chen, A. Llobet, G.L. Brennecka, R.T. Forsyth, D.R. Guidry, P.A. Papin, R.J. McCabe, J. Am. Ceram. Soc. 95, 2820 (2012)

    Article  Google Scholar 

  16. A. Huanosta, E. Alvarez, M.E. Villafuerte-Castrejón, A.R. West, Mater. Res. Bull. 39, 2229 (2004)

    Article  Google Scholar 

  17. N. Bamba, T. Yokouchi, J. Takaoka, B. Elouadi, T. Fukami, Ferroelectrics 304, 135 (2004)

    Article  Google Scholar 

  18. M. Tahiri, N. Masaif, A. Jennane, E.M. Lemdek, K. Benkhouja, E.M. Lotfi, Opt. Quantum Electron. 48, 278 (2016)

    Article  Google Scholar 

  19. Y. Zhang, D. Jia, Y. Zhou, Q. Meng, Y. Liu, H. Ke, Ceram. Int. 35, 3475 (2009)

    Article  Google Scholar 

  20. B.S. Chiou, T.Y. Lin, J.G. Duh, Mater. Chem. Phys. 28, 51 (1991)

    Article  Google Scholar 

  21. P.J. Lin, L.A. Bursill, Micron 13, 275 (1982)

    Google Scholar 

  22. Y. Torii, T. Sekiya, T. Yamamoto, Mater. Res. Bull. 18, 1569 (1983)

    Article  Google Scholar 

  23. A.K. Axelsson, Y. Pan, M. Valant, N.M. Alford, J. Am. Ceram. Soc. 93, 800 (2010)

    Article  Google Scholar 

  24. Z. Zhao, Y. Dai, X. Li, Z. Zhao, X. Zhang, Appl. Phys. Lett. 108, 172906 (2016)

    Article  ADS  Google Scholar 

  25. L. Chen, H. Fan, S. Zhang, J Am Ceram Soc. 100, 3568 (2017)

    Article  Google Scholar 

  26. S. Shimada, K. Kodaira, T. Matsushita, J. Mater. Sci. 19, 1385 (1984)

    Article  ADS  Google Scholar 

  27. W.W. Yang, Y.F. Zhang, Vacuum 173, 109130 (2020)

    Article  ADS  Google Scholar 

  28. Y.F. Zhang, Y. Zhou, S.C. Jia, H.Y. Li, Q.C. Meng, Mater. Sci. Eng. A 448, 330 (2007)

    Article  Google Scholar 

  29. Y.D. Hou, P.X. Lu, M.K. Zhu, X.M. Song, J.L. Tang, B. Wang, H. Yan, J. Am. Ceram. Soc. 87, 847 (2004)

    Article  Google Scholar 

  30. Y. Yan, K.H. Cho, S. Priya, A. Feteira, J. Am. Ceram. Soc. 94, 3953 (2011)

    Article  Google Scholar 

  31. M. Xiao, Y. Wei, P. Zhang, Mater. Chem. Phys. 225, 99 (2019)

    Article  Google Scholar 

  32. X. Dai, A. Digiovanni, D. Viehland, J. Appl. Phys. 74, 3399 (1993)

    Article  ADS  Google Scholar 

  33. A.P. Barranco, F.C. Piñar, P. Martínez, E.T. García, J. Eur. Ceram. Soc. 21, 523 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11604204, 51603120 and  51701114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youfeng Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Zhang, Y. Microstructure and dielectric properties of LiTaO3 ceramics with MnO2 addition fabricated by hot-pressing sintering. Appl. Phys. A 126, 104 (2020). https://doi.org/10.1007/s00339-020-3281-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3281-6

Keywords

Navigation